Skip to main content
Erschienen in: Microsystem Technologies 10/2018

13.02.2018 | Technical Paper

An IMU-compensated skeletal tracking system using Kinect for the upper limb

verfasst von: Yi-Chun Du, Cheng-Bang Shih, Shih-Chen Fan, Hui-Ting Lin, Pei-Jarn Chen

Erschienen in: Microsystem Technologies | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Kinect device is being increasingly used in conjunction with rehabilitative actions. However, the use of Kinect as a skeletal tracking system requires several further modifications and technological breakthroughs. This study used inertial measurement units (IMUs) to complement skeletal tracking with the Kinect. The IMUs were used to compensate for errors in calculating shoulder and elbow joint angles detected by the Kinect device while the patients performed rehabilitation movements. Thirty normal participants were recruited, and their shoulder and elbow joint angles were recorded and calculated using the Kinect and IMUs while they moved during movement games. If movement with a larger measuring error was detected, the measurement was directed to the IMU to calculate the angle and calibrate the angles measured by the Kinect device. The mean percent errors of the Kinect measurements with respect to the IMU measurement at the shoulder joint during shoulder flexion and rotation at 90° of shoulder flexion were 15.08 ± 4.13 and 26.00 ± 7.41%, respectively. The mean percent errors of the Kinect measurements with respect to the IMU measurements at the elbow joint during shoulder flexion, shoulder rotation at 90° of shoulder abduction, and shoulder rotation at 90° of shoulder flexion were 12.92 ± 2.43, 17.75 ± 4.91, and 23.3 ± 7.01%, respectively. The mean percent errors for the participants’ shoulders in Game 2 and Game 3 were 15.47 ± 4.88 and 28.13 ± 8.51%, respectively, and the mean percent errors of the participants’ elbows in Game 3 were 55.62 ± 13.74%. The proposed method to calibrate the angles detected using the Kinect have a greater mean accuracy rate (84.58%) and a higher processing rate (10 ms/frame) than traditional methods that use only Kinect or IMUs. The proposed system increases the accuracy of movement detected by the Kinect device, and this increases the processing rate of the IMUs, thereby improving clinical practicality.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bleiweiss A, Eshar D, Kutliroff G, Lerner A, Oshrat Y, Yanai Y (2010) Enhanced interactive gaming by blending full-body tracking and gesture animation. In: ACM SIGGRAPH ASIA 2010 sketches, p 34 Bleiweiss A, Eshar D, Kutliroff G, Lerner A, Oshrat Y, Yanai Y (2010) Enhanced interactive gaming by blending full-body tracking and gesture animation. In: ACM SIGGRAPH ASIA 2010 sketches, p 34
Zurück zum Zitat Cheung J, Maron M, Tatla S, Jarus T (2013) Virtual reality as balance rehabilitation for children with brain injury: a case study. Technology and Disability 25:207–219 Cheung J, Maron M, Tatla S, Jarus T (2013) Virtual reality as balance rehabilitation for children with brain injury: a case study. Technology and Disability 25:207–219
Zurück zum Zitat Ding ZQ, Luo ZQ, Causo A, Chen IM, Yue KX, Yeo SH, Ling KV (2013) Inertia sensor-based guidance system for upperlimb posture correction. Med Eng Phys 35:269–276CrossRef Ding ZQ, Luo ZQ, Causo A, Chen IM, Yue KX, Yeo SH, Ling KV (2013) Inertia sensor-based guidance system for upperlimb posture correction. Med Eng Phys 35:269–276CrossRef
Zurück zum Zitat Erdoğan H, Ekenel HK (2015) Game design for physical therapy and rehabilitation using Kinect. In: Medical technologies national conference (TIPTEKNO), pp 1–4 Erdoğan H, Ekenel HK (2015) Game design for physical therapy and rehabilitation using Kinect. In: Medical technologies national conference (TIPTEKNO), pp 1–4
Zurück zum Zitat Filatov YVBA, Dao VB, Le VT (2015) Dynamic calibration method of inertial measurement units. Microsyst Technol 21:2463–2467CrossRef Filatov YVBA, Dao VB, Le VT (2015) Dynamic calibration method of inertial measurement units. Microsyst Technol 21:2463–2467CrossRef
Zurück zum Zitat Han SL, Xie MJ, Chien CC, Cheng YC, Tsao CW (2016) Using MEMS-based inertial sensor with ankle foot orthosis for telerehabilitation and its clinical evaluation in brain injuries and total knee replacement patients. Microsyst Technol 22:625–634CrossRef Han SL, Xie MJ, Chien CC, Cheng YC, Tsao CW (2016) Using MEMS-based inertial sensor with ankle foot orthosis for telerehabilitation and its clinical evaluation in brain injuries and total knee replacement patients. Microsyst Technol 22:625–634CrossRef
Zurück zum Zitat Huang S et al (2012) Motor impairment evaluation for upper limb in stroke patients on the basis of a microsensor. Int J Rehabil Res 35:161–169CrossRef Huang S et al (2012) Motor impairment evaluation for upper limb in stroke patients on the basis of a microsensor. Int J Rehabil Res 35:161–169CrossRef
Zurück zum Zitat Krause DA, Boyd MS, Hager AN, Smoyer EC, Thompson AT, Hollman JH (2015) Reliability and accuracy of a goniometer mobile device application for video measurement of the functional movement screen deep squat test Int J Sports. Phys Ther 10:37–44 Krause DA, Boyd MS, Hager AN, Smoyer EC, Thompson AT, Hollman JH (2015) Reliability and accuracy of a goniometer mobile device application for video measurement of the functional movement screen deep squat test Int J Sports. Phys Ther 10:37–44
Zurück zum Zitat Liu T, Inoue Y, Shibata K (2009) Development of a wearable sensor system for quantitative gait analysis. Measurement 42:978–988CrossRef Liu T, Inoue Y, Shibata K (2009) Development of a wearable sensor system for quantitative gait analysis. Measurement 42:978–988CrossRef
Zurück zum Zitat Liu L, Wu X, Wu L, Guo T (2012) Static human gesture grading based on Kinect. In: Image and signal processing (CISP), pp 1390–1393 Liu L, Wu X, Wu L, Guo T (2012) Static human gesture grading based on Kinect. In: Image and signal processing (CISP), pp 1390–1393
Zurück zum Zitat Ompusunggu AP, Bey-Temsamani A (2016) 2-Level error (drift) compensation for low-cost MEMS-based inertial measurement unit (IMU). Microsyst Technol 22:1601–1612CrossRef Ompusunggu AP, Bey-Temsamani A (2016) 2-Level error (drift) compensation for low-cost MEMS-based inertial measurement unit (IMU). Microsyst Technol 22:1601–1612CrossRef
Zurück zum Zitat Pastor I, Hayes HA, Bamberg SJ (2012) A feasibility study of an upper limb rehabilitation system using kinect and computer games. In: Conf Proc IEEE Eng Med Biol Soc, pp 1286–1289 Pastor I, Hayes HA, Bamberg SJ (2012) A feasibility study of an upper limb rehabilitation system using kinect and computer games. In: Conf Proc IEEE Eng Med Biol Soc, pp 1286–1289
Zurück zum Zitat Patsadu O, Nukoolkit C, Watanapa B (2012) Human gesture recognition using Kinect camera. In: Computer science and software engineering (JCSSE), pp 28–32 Patsadu O, Nukoolkit C, Watanapa B (2012) Human gesture recognition using Kinect camera. In: Computer science and software engineering (JCSSE), pp 28–32
Zurück zum Zitat Raheja JL, Chaudhary A, Singal K (2011) Tracking of fingertips and centers of palm using kinect. In: 2011 third international conference on computational intelligence, pp 248–252 Raheja JL, Chaudhary A, Singal K (2011) Tracking of fingertips and centers of palm using kinect. In: 2011 third international conference on computational intelligence, pp 248–252
Zurück zum Zitat Recio AC, Becker D, Morgan M, Saunders NR, Schramm LP, McDonald JW III (2013) Use of a virtual reality physical ride-on sailing simulator as a rehabilitation tool for recreational sports and community reintegration: a pilot study. Am J Phys Med Rehabil 92:1104–1109CrossRef Recio AC, Becker D, Morgan M, Saunders NR, Schramm LP, McDonald JW III (2013) Use of a virtual reality physical ride-on sailing simulator as a rehabilitation tool for recreational sports and community reintegration: a pilot study. Am J Phys Med Rehabil 92:1104–1109CrossRef
Zurück zum Zitat Salarian A, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Aminian K (2010) iTUG, a sensitive and reliable measure of mobility. IEEE Trans Neural Syst Rehabil Eng 18:303–310CrossRef Salarian A, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Aminian K (2010) iTUG, a sensitive and reliable measure of mobility. IEEE Trans Neural Syst Rehabil Eng 18:303–310CrossRef
Zurück zum Zitat Tamei T, Orito Y, Funaya H, Ikeda K, Okada Y, Shibata T (2015) Kinect-based posturography for in-home rehabilitation of balance disorders. APSIPA Trans Signal Inf Process 4:e17CrossRef Tamei T, Orito Y, Funaya H, Ikeda K, Okada Y, Shibata T (2015) Kinect-based posturography for in-home rehabilitation of balance disorders. APSIPA Trans Signal Inf Process 4:e17CrossRef
Zurück zum Zitat Tian Y, Meng X, Tao D, Liu D, Feng C (2015) Upper limb motion tracking with the integration of IMU and Kinect. Neurocomputing 159:207–218CrossRef Tian Y, Meng X, Tao D, Liu D, Feng C (2015) Upper limb motion tracking with the integration of IMU and Kinect. Neurocomputing 159:207–218CrossRef
Zurück zum Zitat Yang WT, Tee KY, Chen IM, Causo A, Yeo SH (2013) Portable posture guiding system with visual, verbal feedback for upper extremity. In: Romansy 19—robot design, dynamics and control, pp 127–134CrossRef Yang WT, Tee KY, Chen IM, Causo A, Yeo SH (2013) Portable posture guiding system with visual, verbal feedback for upper extremity. In: Romansy 19—robot design, dynamics and control, pp 127–134CrossRef
Zurück zum Zitat Yun X, Bachmann ER (2006) Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking. IEEE Trans Robot 22:1216–1227CrossRef Yun X, Bachmann ER (2006) Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking. IEEE Trans Robot 22:1216–1227CrossRef
Metadaten
Titel
An IMU-compensated skeletal tracking system using Kinect for the upper limb
verfasst von
Yi-Chun Du
Cheng-Bang Shih
Shih-Chen Fan
Hui-Ting Lin
Pei-Jarn Chen
Publikationsdatum
13.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3769-6

Weitere Artikel der Ausgabe 10/2018

Microsystem Technologies 10/2018 Zur Ausgabe

Neuer Inhalt