Skip to main content

2024 | OriginalPaper | Buchkapitel

An Indicator Based Evolutionary Algorithm for Multiparty Multiobjective Knapsack Problems

verfasst von : Zhen Song, Wenjian Luo, Peilan Xu, Zipeng Ye, Kesheng Chen

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a special case of the multiobjective optimization problem, the multiobjective knapsack problem (MOKP) widely exists in real-world applications. Currently, most algorithms used to solve MOKPs assume that these problems involve only one decision maker (DM). However, some complex MOKPs often involve more than one decision makers and we call such problems multiparty multiobjective knapsack problems (MPMOKPs). Existing algorithms cannot solve MPMOKPs effectively. To the best of our knowledge, there is only a little attention paid to MPMOKPs. In this paper, inspired by existing SMS-EMOA, we propose a novel indicator-based algorithm called SMS-MPEMOA to solve MPMOKPs, which aims to search solutions to satisfy all decision makers as much as possible. SMS-MPEMOA is compared with several state-of-the-art multiparty multiobjective optimization algorithms (MPMOEAs) on the benchmarks and the experimental results demonstrate that SMS-MPEMOA is very competitive.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abdelaziz, F.B., Krichen, S., Chaouachi, J.: A hybrid heuristic for multiobjective knapsack problems. In: Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 205–212 (1999) Abdelaziz, F.B., Krichen, S., Chaouachi, J.: A hybrid heuristic for multiobjective knapsack problems. In: Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 205–212 (1999)
2.
Zurück zum Zitat Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0–1 multiobjective knapsack problem. Comput. Oper. Res. 36(1), 260–279 (2009)MathSciNetCrossRef Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0–1 multiobjective knapsack problem. Comput. Oper. Res. 36(1), 260–279 (2009)MathSciNetCrossRef
3.
Zurück zum Zitat Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRef Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRef
4.
Zurück zum Zitat Cacchiani, V., Iori, M., Locatelli, A., Martello, S.: Knapsack problems-an overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems. Comput. Oper. Res., 105693 (2022) Cacchiani, V., Iori, M., Locatelli, A., Martello, S.: Knapsack problems-an overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems. Comput. Oper. Res., 105693 (2022)
5.
Zurück zum Zitat Chabane, B., Basseur, M., Hao, J.K.: R2-IBMOLS applied to a practical case of the multiobjective knapsack problem. Expert Syst. Appl. 71, 457–468 (2017)CrossRef Chabane, B., Basseur, M., Hao, J.K.: R2-IBMOLS applied to a practical case of the multiobjective knapsack problem. Expert Syst. Appl. 71, 457–468 (2017)CrossRef
6.
Zurück zum Zitat Chang, Y., Luo, W., Lin, X., She, Z., Shi, Y.: Multiparty multiobjective optimization by MOEA/D. In: Proceedings of 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 01–08. IEEE (2022) Chang, Y., Luo, W., Lin, X., She, Z., Shi, Y.: Multiparty multiobjective optimization by MOEA/D. In: Proceedings of 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 01–08. IEEE (2022)
9.
Zurück zum Zitat Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRef Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRef
10.
Zurück zum Zitat Denysiuk, R., Gaspar-Cunha, A., Delbem, A.C.: Neuroevolution for solving multiobjective knapsack problems. Expert Syst. Appl. 116, 65–77 (2019)CrossRef Denysiuk, R., Gaspar-Cunha, A., Delbem, A.C.: Neuroevolution for solving multiobjective knapsack problems. Expert Syst. Appl. 116, 65–77 (2019)CrossRef
12.
Zurück zum Zitat Gandibleux, X., Freville, A.: Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: the two objectives case. J. Heurist. 6(3), 361–383 (2000)CrossRef Gandibleux, X., Freville, A.: Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: the two objectives case. J. Heurist. 6(3), 361–383 (2000)CrossRef
13.
Zurück zum Zitat Hu, Y., et al.: A two-archive model based evolutionary algorithm for multimodal multi-objective optimization problems. Appl. Soft Comput. 119, 108606 (2022)CrossRef Hu, Y., et al.: A two-archive model based evolutionary algorithm for multimodal multi-objective optimization problems. Appl. Soft Comput. 119, 108606 (2022)CrossRef
14.
Zurück zum Zitat Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19(2), 264–283 (2014)CrossRef Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19(2), 264–283 (2014)CrossRef
15.
16.
Zurück zum Zitat Ishibuchi, H., Pang, L.M., Shang, K.: A new framework of evolutionary multi-objective algorithms with an unbounded external archive. Authorea Preprints (2023) Ishibuchi, H., Pang, L.M., Shang, K.: A new framework of evolutionary multi-objective algorithms with an unbounded external archive. Authorea Preprints (2023)
17.
Zurück zum Zitat Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment. IEEE Trans. Evol. Comput. 6(4), 402–412 (2002)CrossRef Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem-a comparative experiment. IEEE Trans. Evol. Comput. 6(4), 402–412 (2002)CrossRef
18.
Zurück zum Zitat Kahloul, S., Zouache, D., Brahmi, B., Got, A.: A multi-external archive-guided henry gas solubility optimization algorithm for solving multi-objective optimization problems. Eng. Appl. Artif. Intell. 109, 104588 (2022)CrossRef Kahloul, S., Zouache, D., Brahmi, B., Got, A.: A multi-external archive-guided henry gas solubility optimization algorithm for solving multi-objective optimization problems. Eng. Appl. Artif. Intell. 109, 104588 (2022)CrossRef
19.
Zurück zum Zitat Liu, K., Li, K., Ma, H., Zhang, J., Peng, Q.: Multi-objective optimization of charging patterns for lithium-ion battery management. Energy Convers. Manage. 159, 151–162 (2018)CrossRef Liu, K., Li, K., Ma, H., Zhang, J., Peng, Q.: Multi-objective optimization of charging patterns for lithium-ion battery management. Energy Convers. Manage. 159, 151–162 (2018)CrossRef
20.
Zurück zum Zitat Liu, W., Luo, W., Lin, X., Li, M., Yang, S.: Evolutionary approach to multiparty multiobjective optimization problems with common pareto optimal solutions. In: Proceedings of 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–9. IEEE (2020) Liu, W., Luo, W., Lin, X., Li, M., Yang, S.: Evolutionary approach to multiparty multiobjective optimization problems with common pareto optimal solutions. In: Proceedings of 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–9. IEEE (2020)
21.
Zurück zum Zitat Lu, T.C., Yu, G.R.: An adaptive population multi-objective quantum-inspired evolutionary algorithm for multi-objective 0/1 knapsack problems. Inf. Sci. 243, 39–56 (2013)MathSciNetCrossRef Lu, T.C., Yu, G.R.: An adaptive population multi-objective quantum-inspired evolutionary algorithm for multi-objective 0/1 knapsack problems. Inf. Sci. 243, 39–56 (2013)MathSciNetCrossRef
22.
Zurück zum Zitat Luna, F., Zavala, G.R., Nebro, A.J., Durillo, J.J., Coello, C.A.C.: Solving a real-world structural optimization problem with a distributed SMS-EMOA algorithm. In: 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 600–605. IEEE (2013) Luna, F., Zavala, G.R., Nebro, A.J., Durillo, J.J., Coello, C.A.C.: Solving a real-world structural optimization problem with a distributed SMS-EMOA algorithm. In: 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 600–605. IEEE (2013)
23.
Zurück zum Zitat Martins, M.S., Delgado, M.R., Santana, R., Lüders, R., Gonçalves, R.A., Almeida, C.P.D.: HMOBEDA: Hybrid multi-objective Bayesian estimation of distribution algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 357–364 (2016) Martins, M.S., Delgado, M.R., Santana, R., Lüders, R., Gonçalves, R.A., Almeida, C.P.D.: HMOBEDA: Hybrid multi-objective Bayesian estimation of distribution algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 357–364 (2016)
24.
Zurück zum Zitat Neubauer, A.: Theory of the simple genetic algorithm with \(\alpha \)-selection, uniform crossover and bitwise mutation. WSEAS Trans Syst., ISSN 11092777, 989–998 (2010) Neubauer, A.: Theory of the simple genetic algorithm with \(\alpha \)-selection, uniform crossover and bitwise mutation. WSEAS Trans Syst., ISSN 11092777, 989–998 (2010)
26.
Zurück zum Zitat Poli, R., Langdon, W.B.: A new schema theorem for genetic programming with one-point crossover and point mutation. Cognitive Science Research Papers-University of Birmingham CSRP (1997) Poli, R., Langdon, W.B.: A new schema theorem for genetic programming with one-point crossover and point mutation. Cognitive Science Research Papers-University of Birmingham CSRP (1997)
27.
Zurück zum Zitat Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: Proceedings of 2015 Latin American computing conference (CLEI), pp. 1–11. IEEE (2015) Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: Proceedings of 2015 Latin American computing conference (CLEI), pp. 1–11. IEEE (2015)
29.
Zurück zum Zitat Singh, N., Vardhan, M.: Computing optimal block size for blockchain based applications with contradictory objectives. Procedia Comput. Sci. 171, 1389–1398 (2020)CrossRef Singh, N., Vardhan, M.: Computing optimal block size for blockchain based applications with contradictory objectives. Procedia Comput. Sci. 171, 1389–1398 (2020)CrossRef
30.
Zurück zum Zitat Soares, D., Arroyo, J.: A grasp algorithm for the multi-objective knapsack problem. In: Proceedings of XXIV International Conference of the Chilean Computer Science Society, Arica, Chile (2004) Soares, D., Arroyo, J.: A grasp algorithm for the multi-objective knapsack problem. In: Proceedings of XXIV International Conference of the Chilean Computer Science Society, Arica, Chile (2004)
31.
Zurück zum Zitat Song, Z., Luo, W., Lin, X., She, Z., Zhang, Q.: On multiobjective knapsack problems with multiple decision makers. In: Proceedings of 2022 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 156–163. IEEE (2022) Song, Z., Luo, W., Lin, X., She, Z., Zhang, Q.: On multiobjective knapsack problems with multiple decision makers. In: Proceedings of 2022 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 156–163. IEEE (2022)
32.
Zurück zum Zitat Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)CrossRef Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)CrossRef
33.
34.
Zurück zum Zitat Wang, Z., Gong, M., Li, P., Gu, J., Tian, W.: A hypervolume distribution entropy guided computation resource allocation mechanism for the multiobjective evolutionary algorithm based on decomposition. Appl. Soft Comput. 116, 108297 (2022)CrossRef Wang, Z., Gong, M., Li, P., Gu, J., Tian, W.: A hypervolume distribution entropy guided computation resource allocation mechanism for the multiobjective evolutionary algorithm based on decomposition. Appl. Soft Comput. 116, 108297 (2022)CrossRef
35.
Zurück zum Zitat Yakici, E.: A multiobjective fleet location problem solved by adaptation of evolutionary algorithms NSGA-II and SMS-EMOA. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24(1), 94–100 (2018)MathSciNet Yakici, E.: A multiobjective fleet location problem solved by adaptation of evolutionary algorithms NSGA-II and SMS-EMOA. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24(1), 94–100 (2018)MathSciNet
36.
Zurück zum Zitat Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. TIK report 103 (2001) Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. TIK report 103 (2001)
37.
Zurück zum Zitat Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms — a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056872CrossRef Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms — a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). https://​doi.​org/​10.​1007/​BFb0056872CrossRef
38.
Zurück zum Zitat Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRef Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRef
39.
Zurück zum Zitat Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)CrossRef Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)CrossRef
Metadaten
Titel
An Indicator Based Evolutionary Algorithm for Multiparty Multiobjective Knapsack Problems
verfasst von
Zhen Song
Wenjian Luo
Peilan Xu
Zipeng Ye
Kesheng Chen
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_17