Skip to main content
Erschienen in: Neural Computing and Applications 9/2020

21.11.2018 | Original Article

An integrated particle swarm optimization approach hybridizing a new self-adaptive particle swarm optimization with a modified differential evolution

verfasst von: Biwei Tang, Kui Xiang, Muye Pang

Erschienen in: Neural Computing and Applications | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hybridizing particle swarm optimization (PSO) with differential evolution (DE), this paper proposes an integrated PSO–DE optimizer and examines the performance of this optimizer. Firstly, a new self-adaptive PSO (SAPSO) is established to guide movements of particles in the proposed hybrid PSO. Aiming at well trade-offing the global and local search capabilities, a self-adaptive strategy is proposed to adaptively update the three main control parameters of particles in SAPSO. Since the performance of PSO heavily relies on its convergence, the convergence of SAPSO is analytically investigated and a convergence-guaranteed parameter selection rule is provided for SAPSO in this study. Subsequently, a modified self-adaptive differential evolution is presented to evolve the personal best positions of particles in the proposed hybrid PSO in order to mitigant the potential stagnation issue. Next, the performance of the proposed method is validated via 25 benchmark test functions and two real-world problems. The simulation results confirm that the proposed method performs significantly better than its peers at a confidence level of 95% over the 25 benchmarks in terms of the solution optimality. Besides, the proposed method outperforms its contenders over the majority of the 25 benchmarks with respect to the search reliability and the convergence speed. Moreover, the computational complexity of the proposed method is comparable with those of some other enhanced PSO–DE methods compared. The simulation results over the two real-world issues reveal that the proposed method dominates its competitors as far as the solution optimality is considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Leung AYT, Zhang H, Cheng CC, Lee YY (2008) Particle swarm optimization of TMD by non-stationary base excitation during earthquake. Earthq Eng Struct Dyn 37:1223–1246CrossRef Leung AYT, Zhang H, Cheng CC, Lee YY (2008) Particle swarm optimization of TMD by non-stationary base excitation during earthquake. Earthq Eng Struct Dyn 37:1223–1246CrossRef
2.
Zurück zum Zitat Leung AYT, Zhang H (2009) Particle swarm optimization of tuned mass dampers. Eng Struct 31:715–728CrossRef Leung AYT, Zhang H (2009) Particle swarm optimization of tuned mass dampers. Eng Struct 31:715–728CrossRef
3.
Zurück zum Zitat Zhang H, Llorca J, Davis CC, Milner SD (2012) Control and optimization in heterogeneous wireless networks. IEEE Trans Mob Comput 11(7):1207–1222CrossRef Zhang H, Llorca J, Davis CC, Milner SD (2012) Control and optimization in heterogeneous wireless networks. IEEE Trans Mob Comput 11(7):1207–1222CrossRef
4.
Zurück zum Zitat Yadav N, Yadav A, Kumar M, Kim JH (2017) An efficient algorithm based on artificial neural networks and particle swarm optimization for solution of nonlinear Troesch’s problem. Neural Comput Appl 28(1):171–178CrossRef Yadav N, Yadav A, Kumar M, Kim JH (2017) An efficient algorithm based on artificial neural networks and particle swarm optimization for solution of nonlinear Troesch’s problem. Neural Comput Appl 28(1):171–178CrossRef
5.
Zurück zum Zitat Hasanipanah M, Armaghani DJ, Amnieh HB, Majid MZA, Tahir MMD (2017) Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural Comput Appl 28(s1):1043–1050CrossRef Hasanipanah M, Armaghani DJ, Amnieh HB, Majid MZA, Tahir MMD (2017) Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural Comput Appl 28(s1):1043–1050CrossRef
6.
Zurück zum Zitat Zhang YC, Xiong X, Zhang QD (2013) An Improved self-adaptive PSO algorithm with detection function for multimodal function optimization problems. Math Probl Eng 2013:716952MathSciNetMATH Zhang YC, Xiong X, Zhang QD (2013) An Improved self-adaptive PSO algorithm with detection function for multimodal function optimization problems. Math Probl Eng 2013:716952MathSciNetMATH
7.
Zurück zum Zitat Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255CrossRef Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255CrossRef
8.
Zurück zum Zitat Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11(4):3658–3670CrossRef Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11(4):3658–3670CrossRef
9.
Zurück zum Zitat Lim WH, Isa NMA (2014) An adaptive two-layer particle swarm optimization with elitist learning strategy. Inf Sci (Ny) 273:49–72MathSciNetCrossRef Lim WH, Isa NMA (2014) An adaptive two-layer particle swarm optimization with elitist learning strategy. Inf Sci (Ny) 273:49–72MathSciNetCrossRef
10.
Zurück zum Zitat Akbari R, Ziarati K (2011) A rank based particle swarm optimization algorithm with dynamic adaptation. J Comput Appl Math 235(8):2694–2714MathSciNetCrossRef Akbari R, Ziarati K (2011) A rank based particle swarm optimization algorithm with dynamic adaptation. J Comput Appl Math 235(8):2694–2714MathSciNetCrossRef
11.
Zurück zum Zitat Roh JH, Kim MJ, Song HY, Park JB, Lee SU, Son SY (2013) An improved mean-variance optimization for nonconvex economic dispatch problems. J Electr Eng Technol 8(1):80–89CrossRef Roh JH, Kim MJ, Song HY, Park JB, Lee SU, Son SY (2013) An improved mean-variance optimization for nonconvex economic dispatch problems. J Electr Eng Technol 8(1):80–89CrossRef
12.
Zurück zum Zitat Leboucher C, Shin HS, Siarry P, Le Ménec S, Chelouah R, Tsourdos A (2016) Convergence proof of an enhanced particle swarm optimisation method integrated with evolutionary game theory. Inf Sci (Ny) 346–347:389–411CrossRef Leboucher C, Shin HS, Siarry P, Le Ménec S, Chelouah R, Tsourdos A (2016) Convergence proof of an enhanced particle swarm optimisation method integrated with evolutionary game theory. Inf Sci (Ny) 346–347:389–411CrossRef
13.
Zurück zum Zitat Tang B, Zhu Z, Luo J (2016) A framework for constrained optimization problems based on a modified particle swarm optimization. Math Probl Eng 2016:8627083MathSciNetMATH Tang B, Zhu Z, Luo J (2016) A framework for constrained optimization problems based on a modified particle swarm optimization. Math Probl Eng 2016:8627083MathSciNetMATH
15.
Zurück zum Zitat Wang Y, Yang Y (2009) Particle swarm optimization with preference order ranking for multi-objective optimization. Inf Sci (Ny) 179(12):1944–1959MathSciNetCrossRef Wang Y, Yang Y (2009) Particle swarm optimization with preference order ranking for multi-objective optimization. Inf Sci (Ny) 179(12):1944–1959MathSciNetCrossRef
16.
Zurück zum Zitat Epitropakis MG, Plagianakos VP, Vrahatis MN (2012) Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach. Inf Sci (Ny) 216:50–92CrossRef Epitropakis MG, Plagianakos VP, Vrahatis MN (2012) Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach. Inf Sci (Ny) 216:50–92CrossRef
17.
Zurück zum Zitat Zheng YJ, Xu XL, Ling HF, Chen SY (2015) A hybrid fireworks optimization method with differential evolution operators. Neurocomputing 148:75–82CrossRef Zheng YJ, Xu XL, Ling HF, Chen SY (2015) A hybrid fireworks optimization method with differential evolution operators. Neurocomputing 148:75–82CrossRef
18.
Zurück zum Zitat Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95, Proceedings of the sixth international symposium on micro machine and human science, pp 39–43 Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95, Proceedings of the sixth international symposium on micro machine and human science, pp 39–43
19.
Zurück zum Zitat Salman A, Engelbrecht AP, Omran MGH (2007) Empirical analysis of self-adaptive differential evolution. Eur J Oper Res 183(2):785–804CrossRef Salman A, Engelbrecht AP, Omran MGH (2007) Empirical analysis of self-adaptive differential evolution. Eur J Oper Res 183(2):785–804CrossRef
20.
Zurück zum Zitat Chauhan P, Deep K, Pant M (2013) Novel inertia weight strategies for particle swarm optimization. Memet Comput 5(3):229–251CrossRef Chauhan P, Deep K, Pant M (2013) Novel inertia weight strategies for particle swarm optimization. Memet Comput 5(3):229–251CrossRef
21.
Zurück zum Zitat Van Den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci (Ny) 176(8):937–971MathSciNetCrossRef Van Den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci (Ny) 176(8):937–971MathSciNetCrossRef
22.
Zurück zum Zitat Tang B, Zhu Z, Luo J (2016) Hybridizing particle swarm optimization and differential evolution for the mobile robot global path planning. Int J Adv Robot Syst 13:1–17CrossRef Tang B, Zhu Z, Luo J (2016) Hybridizing particle swarm optimization and differential evolution for the mobile robot global path planning. Int J Adv Robot Syst 13:1–17CrossRef
23.
Zurück zum Zitat Lin Y-K, Chong CS (2015) Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system. J Intell Manuf 28:1189–1201CrossRef Lin Y-K, Chong CS (2015) Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system. J Intell Manuf 28:1189–1201CrossRef
24.
Zurück zum Zitat Yu J, Wang C (2013) A max-min ant colony system for assembly sequence planning. Int J Adv Manuf Technol 67(9–12):2819–2835CrossRef Yu J, Wang C (2013) A max-min ant colony system for assembly sequence planning. Int J Adv Manuf Technol 67(9–12):2819–2835CrossRef
25.
Zurück zum Zitat Zhang Y, Gong D, Sun X, Geng N (2014) Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis. Soft Comput 18(7):1337–1352CrossRef Zhang Y, Gong D, Sun X, Geng N (2014) Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis. Soft Comput 18(7):1337–1352CrossRef
26.
Zurück zum Zitat Blackwell T (2012) A study of collapse in bare bones particle swarm optimization. IEEE Trans Evol Comput 16(3):354–372CrossRef Blackwell T (2012) A study of collapse in bare bones particle swarm optimization. IEEE Trans Evol Comput 16(3):354–372CrossRef
27.
Zurück zum Zitat Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Nat Comput 1–50 Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Nat Comput 1–50
28.
Zurück zum Zitat Zhang J, Zhou Y, Deng H (2013) Hybridizing particle swarm optimization with differential evolution based on feasibility rules. In: ICGIP 2012, vol 8768, p 876807 Zhang J, Zhou Y, Deng H (2013) Hybridizing particle swarm optimization with differential evolution based on feasibility rules. In: ICGIP 2012, vol 8768, p 876807
29.
Zurück zum Zitat Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput J 10(2):629–640CrossRef Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput J 10(2):629–640CrossRef
30.
Zurück zum Zitat Asafuddoula M, Ray T, Sarker R (2014) An adaptive hybrid differential evolution algorithm for single objective optimization. Appl Math Comput 231:601–618MathSciNetMATH Asafuddoula M, Ray T, Sarker R (2014) An adaptive hybrid differential evolution algorithm for single objective optimization. Appl Math Comput 231:601–618MathSciNetMATH
31.
Zurück zum Zitat Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH
Metadaten
Titel
An integrated particle swarm optimization approach hybridizing a new self-adaptive particle swarm optimization with a modified differential evolution
verfasst von
Biwei Tang
Kui Xiang
Muye Pang
Publikationsdatum
21.11.2018
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 9/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3878-2

Weitere Artikel der Ausgabe 9/2020

Neural Computing and Applications 9/2020 Zur Ausgabe

Cognitive Computing for Intelligent Application and Service

Toward cognitive support for automated defect detection