Skip to main content
Erschienen in: Wireless Personal Communications 1/2020

24.04.2020

An Integrated Trust Assisted Energy Efficient Greedy Data Aggregation for Wireless Sensor Networks

verfasst von: K. P. Uvarajan, C. Gowri Shankar

Erschienen in: Wireless Personal Communications | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks (WSN) gathers information pertaining to sensitive data. As because the sensor nodes in WSN are remote and unattended for a longer period of time, vulnerability to intrusions and attacks are also found to be higher, hence making the medium insecure. However, increasing reliability also results in an increase in energy consumption significantly. Though several methods and mechanisms designed for solving the above said security and energy issues, many of these experiences notable computational, communication, and storage requirements that frequently cannot be contended by resource-constrained sensor nodes. Therefore, in this work, a threefold homogeneous method is introduced that supervises secure neighbor selection, energy-efficient routing and data aggregation with the greedy approach that provides multi-objective purpose called, Trust Assisted Global and Greedy Congestion-aware Data Aggregation for (TAG–GCDA) secured WSN with reduced energy consumption and improved reliability. The method enhances global aggregation precision with finite restrictions in neighbor reliability and aggregation. The threefold process of the TAG–GCDA method ensures trusted neighbor selection based on correlative divergence, energy conservation using the global cost (i.e. predictable trust and unpredictable trust) and greedy congestion control for seamless transmission. These processes intend to reduce the energy usage of the sensors to increase the network lifetime with lesser control and communication overhead. The trade-off between energy and security is obtained so as to advance efficient energy consumption with a higher packet delivery ratio.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alotaibi, M. (2019). Security to wireless sensor networks against malicious attacks using Hamming residue method. EURASIP Journal on Wireless Communications and Networking, 2019(8), 1–7. Alotaibi, M. (2019). Security to wireless sensor networks against malicious attacks using Hamming residue method. EURASIP Journal on Wireless Communications and Networking, 2019(8), 1–7.
2.
Zurück zum Zitat Anwar, R. W., Zainal, A., Outay, F., Yasar, A., & Iqbal, S. (2019). BTEM: Belief based trust evaluation mechanism for wireless sensor networks. Future Generation Computer Systems, 96, 605–616.CrossRef Anwar, R. W., Zainal, A., Outay, F., Yasar, A., & Iqbal, S. (2019). BTEM: Belief based trust evaluation mechanism for wireless sensor networks. Future Generation Computer Systems, 96, 605–616.CrossRef
3.
Zurück zum Zitat Sahraoui, S., & Bilami, A. (2015). Efficient HIP-based approach to ensure lightweight end-to-end security in the internet of things. Computer Networks, 91, 26–45.CrossRef Sahraoui, S., & Bilami, A. (2015). Efficient HIP-based approach to ensure lightweight end-to-end security in the internet of things. Computer Networks, 91, 26–45.CrossRef
4.
Zurück zum Zitat Abbasinezhad-Mood, D., & Nikooghadam, M. (2018). Efficient design of a novel ECC-based public key scheme for medical data protection by utilization of NanoPi Fire. IEEE Transactions on Reliability, 67(3), 1328–1339.CrossRef Abbasinezhad-Mood, D., & Nikooghadam, M. (2018). Efficient design of a novel ECC-based public key scheme for medical data protection by utilization of NanoPi Fire. IEEE Transactions on Reliability, 67(3), 1328–1339.CrossRef
5.
Zurück zum Zitat Miao, X., Liu, Y., Zhao, H., & Li, C. (2019). Distributed online one-class support vector machine for anomaly detection over networks. IEEE Transactions on Cybernetics, 49(4), 1475–1488.CrossRef Miao, X., Liu, Y., Zhao, H., & Li, C. (2019). Distributed online one-class support vector machine for anomaly detection over networks. IEEE Transactions on Cybernetics, 49(4), 1475–1488.CrossRef
6.
Zurück zum Zitat Han, G., Miao, X., Wang, H., Guizani, M., & Zhang, W. (2019). CPSLP: A cloud-based scheme for protecting source-location privacy in wireless sensor networks using multi-sinks. IEEE Transactions on Vehicular Technology, 68(3), 2739–2750.CrossRef Han, G., Miao, X., Wang, H., Guizani, M., & Zhang, W. (2019). CPSLP: A cloud-based scheme for protecting source-location privacy in wireless sensor networks using multi-sinks. IEEE Transactions on Vehicular Technology, 68(3), 2739–2750.CrossRef
7.
Zurück zum Zitat Xie, H., Yan, Z., Yao, Z., & Atiquzzaman, M. (2019). Data collection for security measurement in wireless sensor networks: A survey. IEEE Internet of Things Journal, 6(2), 2205–2224.CrossRef Xie, H., Yan, Z., Yao, Z., & Atiquzzaman, M. (2019). Data collection for security measurement in wireless sensor networks: A survey. IEEE Internet of Things Journal, 6(2), 2205–2224.CrossRef
8.
Zurück zum Zitat He, Y., Han, G., Wang, H., Ansere, J. A., & Zhang, W. (2019). A sector-based random routing scheme for protecting the source location privacy in WSNs for the Internet of Things. Future Generation Computer Systems, 96, 438–448.CrossRef He, Y., Han, G., Wang, H., Ansere, J. A., & Zhang, W. (2019). A sector-based random routing scheme for protecting the source location privacy in WSNs for the Internet of Things. Future Generation Computer Systems, 96, 438–448.CrossRef
9.
Zurück zum Zitat Xu, P., He, S., Wang, W., Susilo, W., & Jin, H. (2018). Lightweight searchable public-key encryption for cloud-assisted wireless sensor networks. IEEE Transactions on Industrial Informatics, 14(8), 3712–3723.CrossRef Xu, P., He, S., Wang, W., Susilo, W., & Jin, H. (2018). Lightweight searchable public-key encryption for cloud-assisted wireless sensor networks. IEEE Transactions on Industrial Informatics, 14(8), 3712–3723.CrossRef
10.
Zurück zum Zitat Cui, J., Shao, L., Zhong, H., Xu, Y., & Liu, L. (2017). Data aggregation with end-to-end confidentiality and integrity for large-scale wireless sensor networks. Peer-to-Peer Network Applications, 11(5), 1022–1037.CrossRef Cui, J., Shao, L., Zhong, H., Xu, Y., & Liu, L. (2017). Data aggregation with end-to-end confidentiality and integrity for large-scale wireless sensor networks. Peer-to-Peer Network Applications, 11(5), 1022–1037.CrossRef
11.
Zurück zum Zitat Yong, L., & Sun, N. (2018). A resilient data aggregation method based on spatio-temporal correlation for wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2018(157), 1–9. Yong, L., & Sun, N. (2018). A resilient data aggregation method based on spatio-temporal correlation for wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2018(157), 1–9.
12.
Zurück zum Zitat Alves, R. C. A., Oliveira, D. A. G., Pereira, G. C. C. F., Albertini, B. C., & Margi, C. B. (2018). 3: Wireless secure SDN-based communication for sensor networks. Security and Communication Networks, 2018, 1–14.CrossRef Alves, R. C. A., Oliveira, D. A. G., Pereira, G. C. C. F., Albertini, B. C., & Margi, C. B. (2018). 3: Wireless secure SDN-based communication for sensor networks. Security and Communication Networks, 2018, 1–14.CrossRef
13.
Zurück zum Zitat Ghugar, U., Pradhan, J., Bhoi, S. K., & Sahoo, R. R. (2019). LB-IDS: Securing wireless sensor network using protocol layer trust-based intrusion detection system. Journal of Computer Networks and Communications, 2019, 1–13.CrossRef Ghugar, U., Pradhan, J., Bhoi, S. K., & Sahoo, R. R. (2019). LB-IDS: Securing wireless sensor network using protocol layer trust-based intrusion detection system. Journal of Computer Networks and Communications, 2019, 1–13.CrossRef
14.
Zurück zum Zitat Yi, X., Bouguettaya, A., Georgakopoulos, D., Song, A., & Willemson, J. (2015). Privacy protection for wireless medical sensor data. IEEE Transactions on Dependable and Secure Computing, 13(3), 369–380.CrossRef Yi, X., Bouguettaya, A., Georgakopoulos, D., Song, A., & Willemson, J. (2015). Privacy protection for wireless medical sensor data. IEEE Transactions on Dependable and Secure Computing, 13(3), 369–380.CrossRef
16.
Zurück zum Zitat Zhang, G., Zhang, Y., & Chen, Z. (2013). Using trust to secure geographic and energy aware routing against multiple attacks. PLoS ONE, 8(10), 1–7. Zhang, G., Zhang, Y., & Chen, Z. (2013). Using trust to secure geographic and energy aware routing against multiple attacks. PLoS ONE, 8(10), 1–7.
18.
Zurück zum Zitat Norouzi, A., & Zaim, A. H. (2014). Genetic algorithm application in optimization of wireless sensor networks. The Scientific World Journal, 6(4), 152–166. Norouzi, A., & Zaim, A. H. (2014). Genetic algorithm application in optimization of wireless sensor networks. The Scientific World Journal, 6(4), 152–166.
19.
Zurück zum Zitat Al-Janabi, S., Al-Shourbaji, I., Shojafar, M., & Shamshirband, S. (2017). Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egyptian Informatics Journal, 18(2), 113–122.CrossRef Al-Janabi, S., Al-Shourbaji, I., Shojafar, M., & Shamshirband, S. (2017). Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egyptian Informatics Journal, 18(2), 113–122.CrossRef
20.
Zurück zum Zitat Dey, N., Ashour, A. S., Shi, F., Fong, S. J., & Sherratt, R. S. (2017). Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Transactions on Consumer Electronics, 63(4), 442–449.CrossRef Dey, N., Ashour, A. S., Shi, F., Fong, S. J., & Sherratt, R. S. (2017). Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Transactions on Consumer Electronics, 63(4), 442–449.CrossRef
21.
Zurück zum Zitat Zhang, P., Wang, J., Guo, K., Wu, F., & Min, G. (2017). Multi-functional secure data aggregation schemes for WSNs. Ad Hoc Networks, 69, 86–99.CrossRef Zhang, P., Wang, J., Guo, K., Wu, F., & Min, G. (2017). Multi-functional secure data aggregation schemes for WSNs. Ad Hoc Networks, 69, 86–99.CrossRef
Metadaten
Titel
An Integrated Trust Assisted Energy Efficient Greedy Data Aggregation for Wireless Sensor Networks
verfasst von
K. P. Uvarajan
C. Gowri Shankar
Publikationsdatum
24.04.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07394-z

Weitere Artikel der Ausgabe 1/2020

Wireless Personal Communications 1/2020 Zur Ausgabe

Neuer Inhalt