Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

21.11.2019 | Research Article - Special Issue - Intelligent Computing And Interdisciplinary Applications | Ausgabe 4/2020

Arabian Journal for Science and Engineering 4/2020

An Integrated Word Embedding-Based Dual-Task Learning Method for Sentiment Analysis

Zeitschrift:
Arabian Journal for Science and Engineering > Ausgabe 4/2020
Autoren:
Yanping Fu, Yun Liu, Sheng-Lung Peng

Abstract

Sentiment analysis aimed to automate the task of discriminating the sentiment tendency of a textual review, which expresses a simple sentiment as positive, negative, or neutral. In general, the basic sentiment analysis solution used for feature extraction is the word embedding technique, which only focuses on the contextual or global semantic information and ignores the sentiment polarity of text. Thus, the word embedding technique leads to biased analysis results, especially for some words that have the same semantic context but an opposite sentiment. In this paper, we propose an integrated sentiment embedding method to combine context and sentiment information using a dual-task learning algorithm to perform sentiment analysis. First, we propose three sentiment language models by encoding the sentiment information of texts into word embedding based on three existing semantic models, namely, continuous bag-of-words, prediction, and log-bilinear. Next, based on semantic language models and the proposed sentiment language models, we propose a dual-task learning algorithm to generate hybrid word embedding named integrated sentiment embedding, in which the joint learning method and parallel learning method are applied to jointly process tasks. Experiments on sentence-level and document-level sentiment classification tasks demonstrate that the proposed integrated sentiment embedding has better classification performances compared with basic word embedding methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2020

Arabian Journal for Science and Engineering 4/2020 Zur Ausgabe

Research Article - Computer Engineering and Computer Science

A Multi-objective Hybrid Algorithm for Optimal Planning of Distributed Generation

Research Article-Computer Engineering and Computer Science

Spark-Based Parallel Method for Prediction of Events

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise