Skip to main content

11.02.2025 | Original Paper

An inverter nonlinearity identification method based on physics-informed network for different working conditions

verfasst von: Jiayi Lu, Sun Wei, Jiang Dong, Ronghai Qu

Erschienen in: Electrical Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The compensation of inverter nonlinearity effects (INEs) can significantly mitigate current distortion, motor vibration, and losses within the motor. In industrial applications, compensation voltages derived from the INE model, as well as offline identification methods and online INE observers, are commonly employed. However, the INE model often lacks precision due to the difficulty in obtaining various inverter parameters. Offline identification is time-consuming, as it necessitates determining the compensation values under a range of working conditions, including varying DC-bus voltages, dead-times, and switching frequencies. Online identification methods tend to be complex because they require the integration of additional identification components into the control system. In this paper, a physics-informed network is proposed to identify the INE compensation value in different working conditions, and an INE model is proposed to provide physics information. This approach aims to reduce identification time and circumvent the complexities associated with traditional control system calculations. The proposed network requires only experimental data of two working conditions from offline identification experiments and can accurately predict compensation voltages for 45 working conditions. Experimental results demonstrate the effectiveness of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kang M-C, Lee S-H, and Yoon Y-D (2016) Compensation for inverter nonlinearity considering voltage drops and switching delays of each leg’s switches. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA: IEEE, pp 1–7 Kang M-C, Lee S-H, and Yoon Y-D (2016) Compensation for inverter nonlinearity considering voltage drops and switching delays of each leg’s switches. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA: IEEE, pp 1–7
2.
Zurück zum Zitat Chen L, Peng FZ (2008) Dead-time elimination for voltage source inverters. IEEE Trans Power Electron 23(2):574–580CrossRefMATH Chen L, Peng FZ (2008) Dead-time elimination for voltage source inverters. IEEE Trans Power Electron 23(2):574–580CrossRefMATH
3.
Zurück zum Zitat Shang C, Yang M, Long J, Xu D, Zhang J, Zhang J (2022) An accurate VSI nonlinearity modeling and compensation method accounting for DC-Link voltage variation based on LUT. IEEE Trans Ind Electron 69(9):8645–8655CrossRefMATH Shang C, Yang M, Long J, Xu D, Zhang J, Zhang J (2022) An accurate VSI nonlinearity modeling and compensation method accounting for DC-Link voltage variation based on LUT. IEEE Trans Ind Electron 69(9):8645–8655CrossRefMATH
4.
Zurück zum Zitat Jeong S-G, Park M-H (1991) The analysis and compensation of dead-time effects in PWM inverters. IEEE Trans Ind Electron 38(2):108–114CrossRefMATH Jeong S-G, Park M-H (1991) The analysis and compensation of dead-time effects in PWM inverters. IEEE Trans Ind Electron 38(2):108–114CrossRefMATH
5.
Zurück zum Zitat Choi JW, Sul SK (1996) Inverter output voltage synthesis using novel dead time compensation. IEEE Trans Power Electron 11(2):221–227CrossRef Choi JW, Sul SK (1996) Inverter output voltage synthesis using novel dead time compensation. IEEE Trans Power Electron 11(2):221–227CrossRef
6.
Zurück zum Zitat Lee D-H, Ahn J-W (2014) A simple and direct dead-time effect compensation scheme in PWM-VSI. IEEE Trans on Ind Applicat 50(5):3017–3025CrossRefMATH Lee D-H, Ahn J-W (2014) A simple and direct dead-time effect compensation scheme in PWM-VSI. IEEE Trans on Ind Applicat 50(5):3017–3025CrossRefMATH
7.
Zurück zum Zitat Zhang Z, Xu L (2014) Dead-time compensation of inverters considering snubber and parasitic capacitance. IEEE Trans Power Electron 29(6):3179–3187CrossRefMATH Zhang Z, Xu L (2014) Dead-time compensation of inverters considering snubber and parasitic capacitance. IEEE Trans Power Electron 29(6):3179–3187CrossRefMATH
8.
Zurück zum Zitat Wang D, Zhang P, Jin Y, Wang M, Liu G, Wang M (2018) Influences on output distortion in voltage source inverter caused by power devices’ parasitic capacitance. IEEE Trans Power Electron 33(5):4261–4273CrossRefMATH Wang D, Zhang P, Jin Y, Wang M, Liu G, Wang M (2018) Influences on output distortion in voltage source inverter caused by power devices’ parasitic capacitance. IEEE Trans Power Electron 33(5):4261–4273CrossRefMATH
9.
Zurück zum Zitat Salt DE, Drury D, Holliday D, Griffo A, Sangha P, Dinu A (2011) Compensation of inverter nonlinear distortion effects for signal-injection-based sensorless control. IEEE Trans on Ind Applicat 47(5):2084–2092CrossRef Salt DE, Drury D, Holliday D, Griffo A, Sangha P, Dinu A (2011) Compensation of inverter nonlinear distortion effects for signal-injection-based sensorless control. IEEE Trans on Ind Applicat 47(5):2084–2092CrossRef
10.
Zurück zum Zitat Shan P, Yang M, Li X, Shang C, Long J, and Xu D (2021) Online inverter nonlinearity compensation method based on current injection. In: 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Korea, Republic of: IEEE, pp 1911–1916 Shan P, Yang M, Li X, Shang C, Long J, and Xu D (2021) Online inverter nonlinearity compensation method based on current injection. In: 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Korea, Republic of: IEEE, pp 1911–1916
11.
Zurück zum Zitat Chen Z, Shi T, Cao Y, Li C, Yan Y (2023) An accurate inverter nonlinearity compensation method for ipmsm torque estimation based on numerical fitting. IEEE J Emerg Sel Topics Power Electron 11(2):2126–2138CrossRefMATH Chen Z, Shi T, Cao Y, Li C, Yan Y (2023) An accurate inverter nonlinearity compensation method for ipmsm torque estimation based on numerical fitting. IEEE J Emerg Sel Topics Power Electron 11(2):2126–2138CrossRefMATH
12.
Zurück zum Zitat Wang X et al. (2020) A simple and effective compensation method for inverter nonlinearity. In: 2020 IEEE transportation electrification conference & Expo (ITEC), Chicago, IL, USA, pp 638-643 Wang X et al. (2020) A simple and effective compensation method for inverter nonlinearity. In: 2020 IEEE transportation electrification conference & Expo (ITEC), Chicago, IL, USA, pp 638-643
13.
Zurück zum Zitat Bojoi IR, Armando E, Pellegrino G, and Rosu SG (2012) Self-commissioning of inverter nonlinear effects in AC drives. In: 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), Florence, Italy: IEEE, pp 213–218 Bojoi IR, Armando E, Pellegrino G, and Rosu SG (2012) Self-commissioning of inverter nonlinear effects in AC drives. In: 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), Florence, Italy: IEEE, pp 213–218
14.
Zurück zum Zitat Yu K, Wang Z, Liu P, and Chen Y (2021) Modeling and compensation of nonlinearity in voltage- source-inverters fed dual three-phase PMSM drives. In: 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada: IEEE, pp 4676–4681 Yu K, Wang Z, Liu P, and Chen Y (2021) Modeling and compensation of nonlinearity in voltage- source-inverters fed dual three-phase PMSM drives. In: 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada: IEEE, pp 4676–4681
16.
Zurück zum Zitat Urasaki N, Senjyu T, Uezato K, Funabashi T (2005) An adaptive dead-time compensation strategy for voltage source inverter fed motor drives. IEEE Trans Power Electron 20(5):1150–1160CrossRefMATH Urasaki N, Senjyu T, Uezato K, Funabashi T (2005) An adaptive dead-time compensation strategy for voltage source inverter fed motor drives. IEEE Trans Power Electron 20(5):1150–1160CrossRefMATH
17.
Zurück zum Zitat Yu K, Wang Z (2022) An online compensation method of VSI nonlinearity for dual three-phase PMSM drives using current injection. IEEE Trans Power Electron 37(4):3769–3774CrossRefMATH Yu K, Wang Z (2022) An online compensation method of VSI nonlinearity for dual three-phase PMSM drives using current injection. IEEE Trans Power Electron 37(4):3769–3774CrossRefMATH
18.
Zurück zum Zitat Lee J-H, Sul S-K (2021) Inverter nonlinearity compensation through deadtime effect estimation. IEEE Trans Power Electron 36(9):10684–10694CrossRefMATH Lee J-H, Sul S-K (2021) Inverter nonlinearity compensation through deadtime effect estimation. IEEE Trans Power Electron 36(9):10684–10694CrossRefMATH
19.
Zurück zum Zitat Lee Y-R, Kwon Y-C, and Sul S-K (2019) Improved signal-injection sensorless control robust to inverter nonlinearity effects by prediction of voltage disturbance. In: 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA: IEEE, pp 1–5 Lee Y-R, Kwon Y-C, and Sul S-K (2019) Improved signal-injection sensorless control robust to inverter nonlinearity effects by prediction of voltage disturbance. In: 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA: IEEE, pp 1–5
20.
Zurück zum Zitat Wang Y, Xu Y, Zou J (2020) ILC-based voltage compensation method for PMSM sensorless control considering inverter nonlinearity and sampling current DC bias. IEEE Trans Ind Electron 67(7):5980–5989CrossRef Wang Y, Xu Y, Zou J (2020) ILC-based voltage compensation method for PMSM sensorless control considering inverter nonlinearity and sampling current DC bias. IEEE Trans Ind Electron 67(7):5980–5989CrossRef
21.
Zurück zum Zitat Qiu T, Wen X, Zhao F (2016) Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives. IEEE Trans Power Electron 31(3):2530–2538CrossRefMATH Qiu T, Wen X, Zhao F (2016) Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives. IEEE Trans Power Electron 31(3):2530–2538CrossRefMATH
22.
Zurück zum Zitat Wang L, Zhu ZQ, Bin H, Gong LM (2020) Current harmonics suppression strategy for PMSM with nonsinusoidal back-EMF based on adaptive linear neuron method. IEEE Trans Ind Electron 67(11):9164–9173CrossRef Wang L, Zhu ZQ, Bin H, Gong LM (2020) Current harmonics suppression strategy for PMSM with nonsinusoidal back-EMF based on adaptive linear neuron method. IEEE Trans Ind Electron 67(11):9164–9173CrossRef
23.
Zurück zum Zitat Wang X, Zhu H (2022) Vibration compensation control of BPMSM with dead-time effect based on adaptive neural network band-pass filter. IEEE Trans Power Electron 37(6):7145–7155CrossRefMATH Wang X, Zhu H (2022) Vibration compensation control of BPMSM with dead-time effect based on adaptive neural network band-pass filter. IEEE Trans Power Electron 37(6):7145–7155CrossRefMATH
24.
Zurück zum Zitat Stender M, Wallscheid O, Bocker J (2021) Comparison of gray-box and black-box two-level three-phase inverter models for electrical drives. IEEE Trans Ind Electron 68(9):8646–8656CrossRefMATH Stender M, Wallscheid O, Bocker J (2021) Comparison of gray-box and black-box two-level three-phase inverter models for electrical drives. IEEE Trans Ind Electron 68(9):8646–8656CrossRefMATH
25.
Zurück zum Zitat Sun P, Wu R, Wang H, Li G, Khalid M, Konstantinou G (2024) Physics-informed fully convolutional network-based power flow analysis for multi-terminal MVDC distribution systems. IEEE Trans Power Syst 39(6):7389–7402CrossRefMATH Sun P, Wu R, Wang H, Li G, Khalid M, Konstantinou G (2024) Physics-informed fully convolutional network-based power flow analysis for multi-terminal MVDC distribution systems. IEEE Trans Power Syst 39(6):7389–7402CrossRefMATH
26.
Zurück zum Zitat Zhao S, Peng Y, Zhang Y, Wang H (2022) parameter estimation of power electronic converters with physics-informed machine learning. IEEE Trans Power Electron 37(10):11567–11578CrossRefMATH Zhao S, Peng Y, Zhang Y, Wang H (2022) parameter estimation of power electronic converters with physics-informed machine learning. IEEE Trans Power Electron 37(10):11567–11578CrossRefMATH
27.
Zurück zum Zitat Ferrando R et al (2024) Physics-informed machine learning for electricity markets: a NYISO case study. IEEE Trans Enrgy Mrkts, Pol Reg 2(1):40–51CrossRefMATH Ferrando R et al (2024) Physics-informed machine learning for electricity markets: a NYISO case study. IEEE Trans Enrgy Mrkts, Pol Reg 2(1):40–51CrossRefMATH
29.
Zurück zum Zitat Gao Y, Liu X, Xiang J (2020) FEM simulation-based generative adversarial networks to detect bearing faults. IEEE Trans Ind Inf 16(7):4961–4971CrossRefMATH Gao Y, Liu X, Xiang J (2020) FEM simulation-based generative adversarial networks to detect bearing faults. IEEE Trans Ind Inf 16(7):4961–4971CrossRefMATH
30.
Zurück zum Zitat Lee J-H and Sul S-K (2020) Inverter nonlinearity compensation of discontinuous PWM considering voltage drop of power semiconductor and dead time effect. In: 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA: IEEE, pp 5677–5682 Lee J-H and Sul S-K (2020) Inverter nonlinearity compensation of discontinuous PWM considering voltage drop of power semiconductor and dead time effect. In: 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA: IEEE, pp 5677–5682
32.
Zurück zum Zitat Shao L, Zhu F, Li X (2015) Transfer learning for visual categorization: a survey. IEEE Trans Neural Netw Learning Syst 26(5):1019–1034MathSciNetCrossRefMATH Shao L, Zhu F, Li X (2015) Transfer learning for visual categorization: a survey. IEEE Trans Neural Netw Learning Syst 26(5):1019–1034MathSciNetCrossRefMATH
33.
Zurück zum Zitat Serrano SA, Martinez-Carranza J, Sucar LE (2024) Knowledge transfer for cross-domain reinforcement learning: a systematic review. IEEE Access 12:114552–114572CrossRef Serrano SA, Martinez-Carranza J, Sucar LE (2024) Knowledge transfer for cross-domain reinforcement learning: a systematic review. IEEE Access 12:114552–114572CrossRef
34.
Zurück zum Zitat Liu Y, Starzyk JA, Zhu Z (2008) Optimized approximation algorithm in neural networks without overfitting. IEEE Trans Neural Netw 19(6):983–995CrossRefMATH Liu Y, Starzyk JA, Zhu Z (2008) Optimized approximation algorithm in neural networks without overfitting. IEEE Trans Neural Netw 19(6):983–995CrossRefMATH
35.
Zurück zum Zitat Buchta L and Kozovsky M (2023) Online neural network application for compensation of the VSI voltage nonlinearities. In: IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, Singapore: IEEE, pp 1–6 Buchta L and Kozovsky M (2023) Online neural network application for compensation of the VSI voltage nonlinearities. In: IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, Singapore: IEEE, pp 1–6
36.
Zurück zum Zitat Wiedemann S, Hackl CM (2023) Simultaneous identification of inverter and machine nonlinearities for self-commissioning of electrical synchronous machine drives. IEEE Trans Energy Convers 38(3):1767–1780CrossRefMATH Wiedemann S, Hackl CM (2023) Simultaneous identification of inverter and machine nonlinearities for self-commissioning of electrical synchronous machine drives. IEEE Trans Energy Convers 38(3):1767–1780CrossRefMATH
Metadaten
Titel
An inverter nonlinearity identification method based on physics-informed network for different working conditions
verfasst von
Jiayi Lu
Sun Wei
Jiang Dong
Ronghai Qu
Publikationsdatum
11.02.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-025-02981-4