Skip to main content

2025 | OriginalPaper | Buchkapitel

An Investigation on Coral Reef Classification Using Machine Learning Algorithms

verfasst von : S. Nithish Karthik, M. Hariharasudhan, M. Anousouya Devi

Erschienen in: Innovative Computing and Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to growing challenges, coral reefs—one of the planet’s most ecologically varied and commercially significant ecosystems—need to be the focus of increased conservation efforts. This paper explores the rapidly developing field of machine learning applications for automatic categorization from underwater photography, as well as the changing terrain of coral reef classification. We emphasize the need of effective monitoring and conservation efforts because we acknowledge the critical role that coral reefs play in maintaining marine biodiversity and coastal protection. Machine learning approaches are explored in the context of growing concerns like habitat loss and coral bleaching, which are combined with biological importance. This study represents a paradigm leap in our understanding of and response to the complex dynamics of coral reefs, going beyond the recent advances in automation. Through the provision of real-time, nuanced insights about the composition and health of reefs, machine learning emerges as a lighthouse that illuminates the route toward successful reef management. The wider ramifications are significant, going beyond simplified procedures to radically change our approaches to conservation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat King, A., Bhandarkar, S. M., & Hopkinson, B. M. (2023). A comparison of deep learning methods for semantic segmentation of coral reef survey images. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1234–1245) King, A., Bhandarkar, S. M., & Hopkinson, B. M. (2023). A comparison of deep learning methods for semantic segmentation of coral reef survey images. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1234–1245)
2.
Zurück zum Zitat Jackett, C., Althaus, F., Maguire, K., Farazi, M., Scoulding, B., Untiedt, C., Ryan, T., Shanks, P., Brodie, P., & Williams, A. (2023). A benthic substrate classification method for seabed images using deep learning: Application to management of deep-sea coral reefs. IEEE Journal of Oceanic Engineering, 48(2), 456–478. Jackett, C., Althaus, F., Maguire, K., Farazi, M., Scoulding, B., Untiedt, C., Ryan, T., Shanks, P., Brodie, P., & Williams, A. (2023). A benthic substrate classification method for seabed images using deep learning: Application to management of deep-sea coral reefs. IEEE Journal of Oceanic Engineering, 48(2), 456–478.
3.
Zurück zum Zitat Hopkinson, B. M., & King, A. C. (2023). Automated classification of three-dimensional reconstructions of coral reefs using convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 61(4), 789–801. Hopkinson, B. M., & King, A. C. (2023). Automated classification of three-dimensional reconstructions of coral reefs using convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 61(4), 789–801.
5.
Zurück zum Zitat Borbon, J., Javier, J., Llamado, J., Dadios, E., & Billones, R. K. (2020) Coral health identification using image classification and convolutional neural networks. In 2020 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1–6). Manila, Philippines. https://doi.org/10.1109/HNICEM49974.2020.9296923 Borbon, J., Javier, J., Llamado, J., Dadios, E., & Billones, R. K. (2020) Coral health identification using image classification and convolutional neural networks. In 2020 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1–6). Manila, Philippines. https://​doi.​org/​10.​1109/​HNICEM49974.​2020.​9296923
7.
Zurück zum Zitat González-Rivero, M., Beijbom, O., Rodriguez-Ramirez, A., Bryant, D. E. P., Ganase, A., Gonzalez-Marrero, Y., Herrera-Reveles, A., Kennedy, E. V., Kim, C. J. S., Lopez-Marcano, S., Markey, K., Neal, B. P., Osborne, K., ReyesNivia, C., Sampayo, E. M., Stolberg, K., Taylor, A., Vercelloni, J., Wyatt, M., & HoeghGuldberg, O. (2017). Monitoring of coral reefs using artificial intelligence: A feasible and cost effective approach. Remote Sensing, 9(1), 65. https://doi.org/10.3390/rs9010065 González-Rivero, M., Beijbom, O., Rodriguez-Ramirez, A., Bryant, D. E. P., Ganase, A., Gonzalez-Marrero, Y., Herrera-Reveles, A., Kennedy, E. V., Kim, C. J. S., Lopez-Marcano, S., Markey, K., Neal, B. P., Osborne, K., ReyesNivia, C., Sampayo, E. M., Stolberg, K., Taylor, A., Vercelloni, J., Wyatt, M., & HoeghGuldberg, O. (2017). Monitoring of coral reefs using artificial intelligence: A feasible and cost effective approach. Remote Sensing, 9(1), 65. https://​doi.​org/​10.​3390/​rs9010065
8.
9.
Zurück zum Zitat White, E., Mohseni, F., & Amani, M. (2023). Coral reef mapping using remote sensing techniques and a supervised classification algorithm. Journal of Remote Sensing, 12(3), 45–67. White, E., Mohseni, F., & Amani, M. (2023). Coral reef mapping using remote sensing techniques and a supervised classification algorithm. Journal of Remote Sensing, 12(3), 45–67.
10.
Zurück zum Zitat Boonnam, N., Udomchaipitak, T., Puttinaovarat, S., Chaichana, T., Boonjing, V., & Muangprathub, J. (2022). Coral reef bleaching under climate change: Prediction modeling and machine learning. Sustainability, 14(10), 6161. https://doi.org/10.3390/su14106161 Boonnam, N., Udomchaipitak, T., Puttinaovarat, S., Chaichana, T., Boonjing, V., & Muangprathub, J. (2022). Coral reef bleaching under climate change: Prediction modeling and machine learning. Sustainability, 14(10), 6161. https://​doi.​org/​10.​3390/​su14106161
14.
16.
Zurück zum Zitat Sharan, S. H., Kininmonth, S., & Mehta, U. V. (2021). Automated CNN based coral reef classification using image augmentation and deep learning. International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, 29(4), 253–261. Sharan, S. H., Kininmonth, S., & Mehta, U. V. (2021). Automated CNN based coral reef classification using image augmentation and deep learning. International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, 29(4), 253–261.
17.
Zurück zum Zitat de Oliveira, L. M. C., Lim, A., Conti, L. A., & Wheeler, A. J. (2021). 3D classification of cold-water coral reefs: A comparison of classification techniques for 3D reconstructions of cold-water coral reefs and seabed. Frontiers in Marine Science, 8, vol no. 640713. https://doi.org/10.3389/fmars.2021.640713 de Oliveira, L. M. C., Lim, A., Conti, L. A., & Wheeler, A. J. (2021). 3D classification of cold-water coral reefs: A comparison of classification techniques for 3D reconstructions of cold-water coral reefs and seabed. Frontiers in Marine Science, 8, vol no. 640713. https://​doi.​org/​10.​3389/​fmars.​2021.​640713
Metadaten
Titel
An Investigation on Coral Reef Classification Using Machine Learning Algorithms
verfasst von
S. Nithish Karthik
M. Hariharasudhan
M. Anousouya Devi
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_21