Skip to main content

2024 | OriginalPaper | Buchkapitel

An MQTT IoT Intrusion Detection System Using Deep-Learning

verfasst von : Greeshma Andrew, M. P. Deepika, Soumia Chandran

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays the devices connected to an Internet of Things (IoT) network is enormously increasing day by day. IoT devices widely using Message Queuing Telemetry Transport (MQTT) protocol for their communication. Because of the heterogeneous nature and lack of security in IoT devices manufacturing, security systems against MQTT traffic are essential. In this paper, we proposed a zero biased Convolutional Neural Network (CNN) for the detection of intrusion. By removing the bias term, it reduces the computational complexity and it would be beneficial to deployed as Intrusion Detection System (IDS) for resource constrained IoT devices. The performance of binary classification of the model is compared with other Deep Neural Network (DNN) with the help of two abstract level features such as bidirectional flow and unidirectional flow from a publicly available dataset MQTT-IoT-IDS2020. The proposed model achieves superior results to the other model with the F1 score of 0.99 for bidirectional and unidirectional flow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Al-Masri, E., Kalyanam, K.R., Batts, J., Kim, J., Singh, S., Vo, T., Yan, C.: Investigating messaging protocols for the Internet of Things (IoT). IEEE Access 8, 94880–94911 (2020)CrossRef Al-Masri, E., Kalyanam, K.R., Batts, J., Kim, J., Singh, S., Vo, T., Yan, C.: Investigating messaging protocols for the Internet of Things (IoT). IEEE Access 8, 94880–94911 (2020)CrossRef
2.
Zurück zum Zitat Soni, D., Makwana, A.: A survey on mqtt: a protocol of Internet of Things (IoT). In: International Conference on Telecommunication, Power Analysis and Computing Techniques (ICTPACT-2017), vol. 20, pp. 173–177 (2017) Soni, D., Makwana, A.: A survey on mqtt: a protocol of Internet of Things (IoT). In: International Conference on Telecommunication, Power Analysis and Computing Techniques (ICTPACT-2017), vol. 20, pp. 173–177 (2017)
3.
Zurück zum Zitat Deogirikar, J., Vidhate, A.: Security attacks in IoT: a survey. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 32–37. IEEE (2017) Deogirikar, J., Vidhate, A.: Security attacks in IoT: a survey. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 32–37. IEEE (2017)
4.
Zurück zum Zitat Da Costa, K.A., Papa, J.P., Lisboa, C.O., Munoz, R., de Albuquerque, V.H.C.: Internet of Things: a survey on machine learning-based intrusion detection approaches. Comput. Netw. 151, 147–157 (2019)CrossRef Da Costa, K.A., Papa, J.P., Lisboa, C.O., Munoz, R., de Albuquerque, V.H.C.: Internet of Things: a survey on machine learning-based intrusion detection approaches. Comput. Netw. 151, 147–157 (2019)CrossRef
5.
Zurück zum Zitat Zhou, L., Pan, S., Wang, J., Vasilakos, A.V.: Machine learning on big data: opportunities and challenges. Neurocomputing 237, 350–361 (2017)CrossRef Zhou, L., Pan, S., Wang, J., Vasilakos, A.V.: Machine learning on big data: opportunities and challenges. Neurocomputing 237, 350–361 (2017)CrossRef
6.
Zurück zum Zitat Liu, Y., Wang, J., Li, J., Song, H., Yang, T., Niu, S., Ming, Z.: Zero-bias deep learning for accurate identification of Internet-of-Things (IoT) devices. IEEE Internet Things J. 8(4), 2627–2634 (2020)CrossRef Liu, Y., Wang, J., Li, J., Song, H., Yang, T., Niu, S., Ming, Z.: Zero-bias deep learning for accurate identification of Internet-of-Things (IoT) devices. IEEE Internet Things J. 8(4), 2627–2634 (2020)CrossRef
7.
Zurück zum Zitat Hindy, H., Bayne, E., Bures, M., Atkinson, R., Tachtatzis, C., Bellekens, X.: Machine learning based IoT intrusion detection system: an MQTT case study (MQTT-IoT-IDS2020 dataset). In: International Networking Conference, pp. 73–84. Springer (2020) Hindy, H., Bayne, E., Bures, M., Atkinson, R., Tachtatzis, C., Bellekens, X.: Machine learning based IoT intrusion detection system: an MQTT case study (MQTT-IoT-IDS2020 dataset). In: International Networking Conference, pp. 73–84. Springer (2020)
8.
Zurück zum Zitat Mosaiyebzadeh, F., Rodriguez, L.G.A., Batista, D.M., Hirata, R.: A network intrusion detection system using deep learning against MQTT attacks in IoT. In: 2021 IEEE Latin-American Conference on Communications (LATINCOM), pp. 1–6. IEEE (2021) Mosaiyebzadeh, F., Rodriguez, L.G.A., Batista, D.M., Hirata, R.: A network intrusion detection system using deep learning against MQTT attacks in IoT. In: 2021 IEEE Latin-American Conference on Communications (LATINCOM), pp. 1–6. IEEE (2021)
9.
Zurück zum Zitat Boppana, T.K., Bagade, P.: GAN-AE: an unsupervised intrusion detection system for MQTT networks. Eng. Appl. Artif. Intell. 119, 105805 (2023) Boppana, T.K., Bagade, P.: GAN-AE: an unsupervised intrusion detection system for MQTT networks. Eng. Appl. Artif. Intell. 119, 105805 (2023)
10.
Zurück zum Zitat Khan, M.A., Khan, M.A., Jan, S.U., Ahmad, J., Jamal, S.S., Shah, A.A. Pitropakis, N., Buchanan, W.J.: A deep learning-based intrusion detection system for mqtt enabled IoT. Sensors 21(21), 7016 (2021) Khan, M.A., Khan, M.A., Jan, S.U., Ahmad, J., Jamal, S.S., Shah, A.A. Pitropakis, N., Buchanan, W.J.: A deep learning-based intrusion detection system for mqtt enabled IoT. Sensors 21(21), 7016 (2021)
11.
Zurück zum Zitat Zeghida, H., Boulaiche, M., Chikh, R.: Securing MQTT protocol for IoT environment using IDS based on ensemble learning. Int. J. Inform. Secur. 1–12 (2023) Zeghida, H., Boulaiche, M., Chikh, R.: Securing MQTT protocol for IoT environment using IDS based on ensemble learning. Int. J. Inform. Secur. 1–12 (2023)
12.
Zurück zum Zitat Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)CrossRef Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)CrossRef
13.
Zurück zum Zitat Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M.A., Al-Amidie, M., Farhan, L.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74 (2021) Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M.A., Al-Amidie, M., Farhan, L.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74 (2021)
Metadaten
Titel
An MQTT IoT Intrusion Detection System Using Deep-Learning
verfasst von
Greeshma Andrew
M. P. Deepika
Soumia Chandran
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_12