Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

12.06.2019 | Ausgabe 3/2019

Automated Software Engineering 3/2019

An NLP approach for cross-domain ambiguity detection in requirements engineering

Zeitschrift:
Automated Software Engineering > Ausgabe 3/2019
Autoren:
Alessio Ferrari, Andrea Esuli
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

During requirements elicitation, different stakeholders with diverse backgrounds and skills need to effectively communicate to reach a shared understanding of the problem at hand. Linguistic ambiguity due to terminological discrepancies may occur between stakeholders that belong to different technical domains. If not properly addressed, ambiguity can create frustration and distrust during requirements elicitation meetings, and lead to problems at later stages of development. This paper presents a natural language processing approach to identify ambiguous terms between different domains, and rank them by ambiguity score. The approach is based on building domain-specific language models, one for each stakeholders’ domain. Word embeddings from each language model are compared in order to measure the differences of use of a term, thus estimating its potential ambiguity across the domains of interest. We evaluate the approach on seven potential elicitation scenarios involving five domains. In the evaluation, we compare the ambiguity rankings automatically produced with the ones manually obtained by the authors as well as by multiple annotators recruited through Amazon Mechanical Turk. The rankings produced by the approach lead to a maximum Kendall’s Tau of 88%. However, for several elicitation scenarios, the application of the approach was unsuccessful in terms of performance. Analysis of the agreement among annotators and of the observed inaccuracies offer hints for further research on the relationship between domain knowledge and natural language ambiguity.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2019

Automated Software Engineering 3/2019 Zur Ausgabe

Premium Partner

    Bildnachweise