Skip to main content
Erschienen in: Computational Mechanics 4/2019

04.04.2019 | Original Paper

An objective and path-independent 3D finite-strain beam with least-squares assumed-strain formulation

verfasst von: P. Areias, M. Pires, N. Vu Bac, Timon Rabczuk

Erschienen in: Computational Mechanics | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An all-encompassing finite-strain representation of rods, shells and continuum can share a common kinematic/constitutive framework where specific conditions for strain, stress and constitutive updating are applied. In this work, finite strain beams are under examination, with several classical requirements met by cooperative techniques judiciously applied. Specifically: the use of a continuum constitutive law is possible due to the relative strain formulation previously introduced, the rotation singularity problem is absent due to the use of a consistent (quadratic) updated Lagrangian technique. Objectiveness and path-independence of director interpolation are satisfied due to the use of a Löwdin frame. These properties are proved in this work. Moreover, high coarse-mesh accuracy is introduced by the least-squares assumed-strain technique, here specialized for a beam. Examples show the accuracy and robustness of the formulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Antman SS (2005) Nonlinear problems of elasticity, 2nd edn. Springer, BerlinMATH Antman SS (2005) Nonlinear problems of elasticity, 2nd edn. Springer, BerlinMATH
2.
Zurück zum Zitat Antman SS, Marlow RS (1991) Material constraints, lagrange multipliers, and compatibility. Arch Ration Mech Anal 116:257–299CrossRefMATH Antman SS, Marlow RS (1991) Material constraints, lagrange multipliers, and compatibility. Arch Ration Mech Anal 116:257–299CrossRefMATH
3.
Zurück zum Zitat Antman SS, Schuricht F (2003) The critical role of the base curve for the qualitative behavior of shearable rods. Math Mech Solids 8:75–102MathSciNetCrossRefMATH Antman SS, Schuricht F (2003) The critical role of the base curve for the qualitative behavior of shearable rods. Math Mech Solids 8:75–102MathSciNetCrossRefMATH
5.
Zurück zum Zitat Areias P, Rabczuk T, César de Sá J, Natal Jorge R (2015) A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares. Comput Mech 55(4):673–696MathSciNetCrossRefMATH Areias P, Rabczuk T, César de Sá J, Natal Jorge R (2015) A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares. Comput Mech 55(4):673–696MathSciNetCrossRefMATH
6.
Zurück zum Zitat Bathe KJ, Bolourchi S (1979) Large displacement analysis of three-dimensional beam structures. Int J Numer Methods Eng 14:961–986CrossRefMATH Bathe KJ, Bolourchi S (1979) Large displacement analysis of three-dimensional beam structures. Int J Numer Methods Eng 14:961–986CrossRefMATH
7.
Zurück zum Zitat Battini J-M (2002) Co-rotational beam elements in instability problems. Technical Report, Royal Institute of Technology, Department of Mechanics, SE-100 44 Stockholm, Sweden, January Battini J-M (2002) Co-rotational beam elements in instability problems. Technical Report, Royal Institute of Technology, Department of Mechanics, SE-100 44 Stockholm, Sweden, January
8.
Zurück zum Zitat Betsch P, Stein E (1999) Numerical implementation of multiplicative elasto-plasticity into assumed strain elements with application to shells at large strains. Comput Method Appl Mech Eng 179:215–245MathSciNetCrossRefMATH Betsch P, Stein E (1999) Numerical implementation of multiplicative elasto-plasticity into assumed strain elements with application to shells at large strains. Comput Method Appl Mech Eng 179:215–245MathSciNetCrossRefMATH
9.
Zurück zum Zitat Cardona A, Géradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26:2403–2438CrossRefMATH Cardona A, Géradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26:2403–2438CrossRefMATH
10.
Zurück zum Zitat Cowper GR (1966) The shear coefficient in Timoshenko’s beam theory. J Appl Mech 33(2):335–340CrossRefMATH Cowper GR (1966) The shear coefficient in Timoshenko’s beam theory. J Appl Mech 33(2):335–340CrossRefMATH
11.
Zurück zum Zitat Crisfield MA, Jelenić G (1999) Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc R Soc Lond A 455:1125–1147MathSciNetCrossRefMATH Crisfield MA, Jelenić G (1999) Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc R Soc Lond A 455:1125–1147MathSciNetCrossRefMATH
12.
Zurück zum Zitat Eugster SR, Hesch C, Betsch P, Glocker Ch (2014) Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates. Int J Numer Methods Eng 97:111–129MathSciNetCrossRefMATH Eugster SR, Hesch C, Betsch P, Glocker Ch (2014) Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates. Int J Numer Methods Eng 97:111–129MathSciNetCrossRefMATH
13.
Zurück zum Zitat Gruttmann F, Wagner W (2001) Shear correction factors in Timoshenko’s beam theory for arbitrary shaped cross-sections. Comput Mech 27:199–207CrossRefMATH Gruttmann F, Wagner W (2001) Shear correction factors in Timoshenko’s beam theory for arbitrary shaped cross-sections. Comput Mech 27:199–207CrossRefMATH
14.
Zurück zum Zitat Hughes TJR (2000) The finite element method. Dover Publications, Mineola (Reprint of Prentice-Hall edition, 1987)MATH Hughes TJR (2000) The finite element method. Dover Publications, Mineola (Reprint of Prentice-Hall edition, 1987)MATH
15.
Zurück zum Zitat Hutchinson JR (2001) Shear coefficients for Timoshenko beam theory. ASME J Appl Mech 68:87–92CrossRefMATH Hutchinson JR (2001) Shear coefficients for Timoshenko beam theory. ASME J Appl Mech 68:87–92CrossRefMATH
16.
Zurück zum Zitat Ibrahimbegović A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Method Appl Mech Eng 122:11–26CrossRefMATH Ibrahimbegović A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Method Appl Mech Eng 122:11–26CrossRefMATH
17.
Zurück zum Zitat Ibrahimbegovicć A, Frey F, Kozar I (1995) Computational aspects of vector-like parametrization of three-dimensional finite rotations. Int J Numer Methods Eng 38:3653–3673MathSciNetCrossRefMATH Ibrahimbegovicć A, Frey F, Kozar I (1995) Computational aspects of vector-like parametrization of three-dimensional finite rotations. Int J Numer Methods Eng 38:3653–3673MathSciNetCrossRefMATH
18.
Zurück zum Zitat Jelenić G, Crisfield MA (1999) Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput Methods Appl Mech Eng 171:141–171MathSciNetCrossRefMATH Jelenić G, Crisfield MA (1999) Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput Methods Appl Mech Eng 171:141–171MathSciNetCrossRefMATH
19.
Zurück zum Zitat Klinkel S, Govindjee S (2002) Using finite strain \(3D\)-material models in beam and shell elements. Eng Comput 19(8):909–921MATH Klinkel S, Govindjee S (2002) Using finite strain \(3D\)-material models in beam and shell elements. Eng Comput 19(8):909–921MATH
20.
Zurück zum Zitat Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4):312–327CrossRef Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4):312–327CrossRef
21.
Zurück zum Zitat Kouhia R, Tuomala M (1993) Static and dynamic analysis of space frames using simple Timoshenko type elements. Int J Numer Methods Eng 36:1189–1221CrossRef Kouhia R, Tuomala M (1993) Static and dynamic analysis of space frames using simple Timoshenko type elements. Int J Numer Methods Eng 36:1189–1221CrossRef
22.
23.
Zurück zum Zitat Löwdin P-O (1950) On the nonorthogonality problem. Adv Quantum Chem 5:185–199CrossRef Löwdin P-O (1950) On the nonorthogonality problem. Adv Quantum Chem 5:185–199CrossRef
24.
25.
Zurück zum Zitat Macneal RH (1994) Finite elements: their design and performance, vol 10016. Marcel Dekker, New York Macneal RH (1994) Finite elements: their design and performance, vol 10016. Marcel Dekker, New York
26.
Zurück zum Zitat Mata P, Oller S, Barbat AH (2007) Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput Method Appl Mech Eng 196:4458–4478MathSciNetCrossRefMATH Mata P, Oller S, Barbat AH (2007) Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput Method Appl Mech Eng 196:4458–4478MathSciNetCrossRefMATH
27.
Zurück zum Zitat Mathisen KM, Bazilevs Y, Haugen B, Helgedagsrud TA, Kvamsdal T, Okstad KM, Raknes SB (2017) A comparative study of beam element formulations for nonlinear analysis: corotational vs geometrically exact formulations. In: Skallerud B, Andersson HI (eds) 9th national Conference on Computational Mechanics MekIT 17, Trondheim, Norway, Department of Structural Engineering, NTNU, pp 245–272 Mathisen KM, Bazilevs Y, Haugen B, Helgedagsrud TA, Kvamsdal T, Okstad KM, Raknes SB (2017) A comparative study of beam element formulations for nonlinear analysis: corotational vs geometrically exact formulations. In: Skallerud B, Andersson HI (eds) 9th national Conference on Computational Mechanics MekIT 17, Trondheim, Norway, Department of Structural Engineering, NTNU, pp 245–272
28.
Zurück zum Zitat Nukala PKVV, White DW (2004) A mixed finite element for three-dimensional nonlinear analysis of steel frames. Comput Methods Appl Mech Eng 193:2507–2545CrossRefMATH Nukala PKVV, White DW (2004) A mixed finite element for three-dimensional nonlinear analysis of steel frames. Comput Methods Appl Mech Eng 193:2507–2545CrossRefMATH
29.
Zurück zum Zitat Pai PF (1999) Shear correction factors and an energy-consistent beam theory. Int J Solids Struct 36:1523–1540CrossRefMATH Pai PF (1999) Shear correction factors and an energy-consistent beam theory. Int J Solids Struct 36:1523–1540CrossRefMATH
30.
Zurück zum Zitat Pian THH, Tong P (1986) Relations between incompatible displacement model and hybrid stress model. Int J Numer Methods Eng 22(1):173–181MathSciNetCrossRefMATH Pian THH, Tong P (1986) Relations between incompatible displacement model and hybrid stress model. Int J Numer Methods Eng 22(1):173–181MathSciNetCrossRefMATH
31.
Zurück zum Zitat Pimenta PM, Campello EMB, Wriggers P (2008) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 1: rods. Comput Mech 42:715–732MathSciNetCrossRefMATH Pimenta PM, Campello EMB, Wriggers P (2008) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 1: rods. Comput Mech 42:715–732MathSciNetCrossRefMATH
32.
Zurück zum Zitat Prathap G (1995) The variationally correct rate of convergence for a two-noded beam element, or whey residual bending flexibility correction is an extravariational trick. Commun Numer Methods Eng 11:403–407CrossRefMATH Prathap G (1995) The variationally correct rate of convergence for a two-noded beam element, or whey residual bending flexibility correction is an extravariational trick. Commun Numer Methods Eng 11:403–407CrossRefMATH
33.
Zurück zum Zitat Reissner E (1981) On finite deformations of space-curved beams. J Appl Math Phys 32:734–744MATH Reissner E (1981) On finite deformations of space-curved beams. J Appl Math Phys 32:734–744MATH
34.
Zurück zum Zitat Ritto-Correa M, Camotim D (2002) On the differentiation of the Rodrigues formula and its significance for the vector-like parameterization of the Reissner–Simo beam theory. Int J Numer Methods Eng 55:1005–1032MathSciNetCrossRefMATH Ritto-Correa M, Camotim D (2002) On the differentiation of the Rodrigues formula and its significance for the vector-like parameterization of the Reissner–Simo beam theory. Int J Numer Methods Eng 55:1005–1032MathSciNetCrossRefMATH
35.
Zurück zum Zitat Romero I (2004) The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput Mech 34:121–133MathSciNetCrossRefMATH Romero I (2004) The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput Mech 34:121–133MathSciNetCrossRefMATH
36.
Zurück zum Zitat Romero I (2008) A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody Syst Dyn 20:51–68MathSciNetCrossRefMATH Romero I (2008) A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody Syst Dyn 20:51–68MathSciNetCrossRefMATH
37.
Zurück zum Zitat Shoemake K (1985) Animating rotation with quaternion curves. In: Proceedings of the 12th annual conference on computer graphics and interactive techniques, SIGGRAPH ’85, New York, NY, USA. ACM, pp 245–254 Shoemake K (1985) Animating rotation with quaternion curves. In: Proceedings of the 12th annual conference on computer graphics and interactive techniques, SIGGRAPH ’85, New York, NY, USA. ACM, pp 245–254
38.
Zurück zum Zitat Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput Method Appl Mech Eng 49:55–70CrossRefMATH Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput Method Appl Mech Eng 49:55–70CrossRefMATH
39.
Zurück zum Zitat Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58:79–116CrossRefMATH Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58:79–116CrossRefMATH
40.
Zurück zum Zitat Truesdell C, Noll W (2004) The non-linear field theories of mechanics, third edn. Springer, LondonCrossRefMATH Truesdell C, Noll W (2004) The non-linear field theories of mechanics, third edn. Springer, LondonCrossRefMATH
41.
Zurück zum Zitat Wackerfuß J, Gruttmann F (2009) A mixed hybrid finite beam element with an interface to arbitrary three-dimensional material models. Comput Methods Appl Mech Eng 198:2053–2066MathSciNetCrossRefMATH Wackerfuß J, Gruttmann F (2009) A mixed hybrid finite beam element with an interface to arbitrary three-dimensional material models. Comput Methods Appl Mech Eng 198:2053–2066MathSciNetCrossRefMATH
42.
Zurück zum Zitat Wolfram Research Inc. (2007) Mathematica Wolfram Research Inc. (2007) Mathematica
43.
Zurück zum Zitat Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method. Its basis & fundamentals, vol 1, 7th edn. Butterworth-Heinemann, The Boulevard, Langford Lane, Kidlington, Oxford Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method. Its basis & fundamentals, vol 1, 7th edn. Butterworth-Heinemann, The Boulevard, Langford Lane, Kidlington, Oxford
Metadaten
Titel
An objective and path-independent 3D finite-strain beam with least-squares assumed-strain formulation
verfasst von
P. Areias
M. Pires
N. Vu Bac
Timon Rabczuk
Publikationsdatum
04.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01696-1

Weitere Artikel der Ausgabe 4/2019

Computational Mechanics 4/2019 Zur Ausgabe

Neuer Inhalt