Skip to main content
Erschienen in: Soft Computing 14/2017

02.02.2016 | Methodologies and Application

An online and incremental GRLVQ algorithm for prototype generation based on granular computing

verfasst von: Israel Cruz-Vega, Hugo Jair Escalante

Erschienen in: Soft Computing | Ausgabe 14/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In supervised classification, learning vector quantization (LVQ) methods are commonly used due to their intuitive structure based on prototypical instances that reduce considerably the computations in the classification process. Several improvements of LVQ have been proposed based on heuristics including LVQ3, and GLVQ. All these methods use the Euclidean distance to evaluate the similarity between prototypes and objects, which may be inappropriate if features are not equally scaled. Metric adaption techniques try to alleviate this problem by learning discriminative distance measures from the training data. Generalized relevance learning vector quantization is one of such improvements. However, in big data problems LVQ algorithms require incremental learning mechanisms. This paper introduces an LVQ-algorithm based on granular computing for prototye-based classification equipped with incremental learning mechanisms. The proposed algorithm is able to group entities with similar features, and at the same time proposes new prototypes to better cover the class distribution with prototyping elements. Two steps for the automatic control of prototypes are proposed: the first one controls the number of prototypes by a usage-frequency indicator; whereas the second one, is designed to learn the relevance of data dimensions, producing an automatic pruning of useless dimensions, avoiding a high computational load and increasing the interpretability of the resulting model. The proposed method is evaluated in benchmark data and obtains competitive performance with state-of-the-art solutions. In the case of big data sets, we obtained the best accuracy rate of about 72 % with a good compression rate of around 94 %.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bharitkar S, Filev D (2001) An online learning vector quantization algorithm. In ISSPA, pp 394–397 Bharitkar S, Filev D (2001) An online learning vector quantization algorithm. In ISSPA, pp 394–397
Zurück zum Zitat Bojer T, Hammer B, Schunk D, von Toschanowitz KT (2001) Relevance determination in learning vector quantization. In: Proceedings of European symposium on artificial neural networks Bojer T, Hammer B, Schunk D, von Toschanowitz KT (2001) Relevance determination in learning vector quantization. In: Proceedings of European symposium on artificial neural networks
Zurück zum Zitat Carpenter GA, Grossberg S (2010) Adaptive resonance theory. Springer, Berlin Carpenter GA, Grossberg S (2010) Adaptive resonance theory. Springer, Berlin
Zurück zum Zitat Chang C-L (1974) Finding prototypes for nearest neighbor classifiers. IEEE Trans Comput 100(11):1179–1184CrossRefMATH Chang C-L (1974) Finding prototypes for nearest neighbor classifiers. IEEE Trans Comput 100(11):1179–1184CrossRefMATH
Zurück zum Zitat Cruz-Vega I, Escalante HJ (2015) Improved learning rule for LVQ based on granular computing. In: Proceedings of 14th Mexican conference on pattern recognition, vol 9116 of LNCS, pp 54–63 Cruz-Vega I, Escalante HJ (2015) Improved learning rule for LVQ based on granular computing. In: Proceedings of 14th Mexican conference on pattern recognition, vol 9116 of LNCS, pp 54–63
Zurück zum Zitat Fernandez Hernandez YB, Bello R, Filiberto Y, Frias M, Coello Blanco L, Caballero Y (2015) An approach for prototype generation based on similarity relations for problems of classification. Comput Sist 19(1):109–118 Fernandez Hernandez YB, Bello R, Filiberto Y, Frias M, Coello Blanco L, Caballero Y (2015) An approach for prototype generation based on similarity relations for problems of classification. Comput Sist 19(1):109–118
Zurück zum Zitat Frank A, Asuncion A et al (2010) UCI machine learning repository Frank A, Asuncion A et al (2010) UCI machine learning repository
Zurück zum Zitat Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning. Springer series in statistics, vol 1. Springer, Berlin Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning. Springer series in statistics, vol 1. Springer, Berlin
Zurück zum Zitat Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17(2–3):107–145CrossRefMATH Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17(2–3):107–145CrossRefMATH
Zurück zum Zitat Hammer B, Villmann T (2002) Generalized relevance learning vector quantization. Neural Netw 15(8):1059–1068CrossRef Hammer B, Villmann T (2002) Generalized relevance learning vector quantization. Neural Netw 15(8):1059–1068CrossRef
Zurück zum Zitat Hastie T, Tibshirani R, Friedman J, Hastie T, Friedman J, Tibshirani R (2009) The elements of statistical learning, vol 2. Springer, BerlinCrossRefMATH Hastie T, Tibshirani R, Friedman J, Hastie T, Friedman J, Tibshirani R (2009) The elements of statistical learning, vol 2. Springer, BerlinCrossRefMATH
Zurück zum Zitat Kietzmann TC, Lange S, Riedmiller M (2008) Incremental GRLVQ: Learning relevant features for 3D object recognition. Neurocomputing 71(13):2868–2879CrossRef Kietzmann TC, Lange S, Riedmiller M (2008) Incremental GRLVQ: Learning relevant features for 3D object recognition. Neurocomputing 71(13):2868–2879CrossRef
Zurück zum Zitat Kirstein S, Wersing H, Körner E (2008) A biologically motivated visual memory architecture for online learning of objects. Neural Netw 21(1):65–77CrossRefMATH Kirstein S, Wersing H, Körner E (2008) A biologically motivated visual memory architecture for online learning of objects. Neural Netw 21(1):65–77CrossRefMATH
Zurück zum Zitat Kohnen T (1986) Learning vector quantization for pattern recognition. Technical report no. TKK-F-A601, Helsinki Kohnen T (1986) Learning vector quantization for pattern recognition. Technical report no. TKK-F-A601, Helsinki
Zurück zum Zitat Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480CrossRef Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480CrossRef
Zurück zum Zitat Koplowitz J, Brown TA (1981) On the relation of performance to editing in nearest neighbor rules. Pattern Recognit 13(3):251–255CrossRef Koplowitz J, Brown TA (1981) On the relation of performance to editing in nearest neighbor rules. Pattern Recognit 13(3):251–255CrossRef
Zurück zum Zitat Li J, Manry MT, Yu C, Wilson DR (2005) Prototype classifier design with pruning. Int J Artif Intell Tools 14(01n02):261–280CrossRef Li J, Manry MT, Yu C, Wilson DR (2005) Prototype classifier design with pruning. Int J Artif Intell Tools 14(01n02):261–280CrossRef
Zurück zum Zitat Lughofer E (2008) Evolving vector quantization for classification of on-line data streams. In: International conference on computational intelligence for modelling control and automation, 2008. IEEE, pp 779–784 Lughofer E (2008) Evolving vector quantization for classification of on-line data streams. In: International conference on computational intelligence for modelling control and automation, 2008. IEEE, pp 779–784
Zurück zum Zitat Lughofer E (2008) Extensions of vector quantization for incremental clustering. Pattern Recognit 41(3):995–1011CrossRefMATH Lughofer E (2008) Extensions of vector quantization for incremental clustering. Pattern Recognit 41(3):995–1011CrossRefMATH
Zurück zum Zitat Nova D, Estévez PA (2014) A review of learning vector quantization classifiers. Neural Comput Appl 25(3–4):511–524CrossRef Nova D, Estévez PA (2014) A review of learning vector quantization classifiers. Neural Comput Appl 25(3–4):511–524CrossRef
Zurück zum Zitat Odorico R (1997) Learning vector quantization with training count (LVQTC). Neural Netw 10(6):1083–1088CrossRef Odorico R (1997) Learning vector quantization with training count (LVQTC). Neural Netw 10(6):1083–1088CrossRef
Zurück zum Zitat Paredes R, Vidal E (2006) Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization. Pattern Recognit 39(2):180–188CrossRefMATH Paredes R, Vidal E (2006) Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization. Pattern Recognit 39(2):180–188CrossRefMATH
Zurück zum Zitat Sato A, Yamada K (1996) Generalized learning vector quantization. Adv Neural Inf Process Syst 7:423–429 Sato A, Yamada K (1996) Generalized learning vector quantization. Adv Neural Inf Process Syst 7:423–429
Zurück zum Zitat Schneider P, Biehl M, Hammer B (2009) Distance learning in discriminative vector quantization. Neural Comput 21(10):2942–2969MathSciNetCrossRefMATH Schneider P, Biehl M, Hammer B (2009) Distance learning in discriminative vector quantization. Neural Comput 21(10):2942–2969MathSciNetCrossRefMATH
Zurück zum Zitat Seo S, Obermayer K (2003) Soft learning vector quantization. Neural Comput 15(7):1589–1604CrossRefMATH Seo S, Obermayer K (2003) Soft learning vector quantization. Neural Comput 15(7):1589–1604CrossRefMATH
Zurück zum Zitat Triguero I, Derrac J, Garcia S, Herrera F (2012) A taxonomy and experimental study on prototype generation for nearest neighbor classification. IEEE Trans Syst Man Cybern C Appl Rev 42(1):86–100CrossRef Triguero I, Derrac J, Garcia S, Herrera F (2012) A taxonomy and experimental study on prototype generation for nearest neighbor classification. IEEE Trans Syst Man Cybern C Appl Rev 42(1):86–100CrossRef
Zurück zum Zitat Villuendas-Rey Y, Garcia-Lorenzo MM (2014) Attribute and case selection for nn classifier through rough sets and naturally inspired algorithms. Comput Sist 18(2):295–311 Villuendas-Rey Y, Garcia-Lorenzo MM (2014) Attribute and case selection for nn classifier through rough sets and naturally inspired algorithms. Comput Sist 18(2):295–311
Zurück zum Zitat Ye X, Shen F, Zhao J (2012) An incremental learning vector quantization algorithm for pattern classification. Neural Comput Appl 21(6):1205–1215CrossRef Ye X, Shen F, Zhao J (2012) An incremental learning vector quantization algorithm for pattern classification. Neural Comput Appl 21(6):1205–1215CrossRef
Zurück zum Zitat Yao YY. Granular computing. In: Proceedings of the 4th Chinese national conference on rough sets and soft computing, vol 31, pp 1–5 Yao YY. Granular computing. In: Proceedings of the 4th Chinese national conference on rough sets and soft computing, vol 31, pp 1–5
Zurück zum Zitat Zadeh LA (1997) Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst 90(2):111–127MathSciNetCrossRefMATH Zadeh LA (1997) Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst 90(2):111–127MathSciNetCrossRefMATH
Metadaten
Titel
An online and incremental GRLVQ algorithm for prototype generation based on granular computing
verfasst von
Israel Cruz-Vega
Hugo Jair Escalante
Publikationsdatum
02.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 14/2017
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-016-2042-0

Weitere Artikel der Ausgabe 14/2017

Soft Computing 14/2017 Zur Ausgabe