Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

21.07.2016 | Focus | Ausgabe 20/2017

Soft Computing 20/2017

An online learning neural network ensembles with random weights for regression of sequential data stream

Zeitschrift:
Soft Computing > Ausgabe 20/2017
Autoren:
Jinliang Ding, Haitao Wang, Chuanbao Li, Tianyou Chai, Junwei Wang
Wichtige Hinweise
Communicated by Y. Jin.

Abstract

An ensemble of neural networks has been proved to be an effective machine learning framework. However, very limited studies in the current literature examined the neural network ensemble for online regression; furthermore, these methods were combination of online individual models and did not consider the ensemble diversity. In this paper, a novel online sequential learning algorithm for neural network ensembles for online regression is proposed. The algorithm is built upon the decorrelated neural network ensembles (DNNE) and thus referred to as Online-DNNE; so it uses single-hidden layer feed-forward neural networks with random hidden nodes’ parameters as ensemble components and introduces negative correlation learning to train base models simultaneously in a cooperative manner which can effectively maintain the ensemble diversity. The Online-DNNE only learns the newly arrived data, and the computation complexity is thus reduced. The results of the experiments with benchmarks show the effectiveness and significant advantages of the proposed approach.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 20/2017

Soft Computing 20/2017 Zur Ausgabe

Methodologies and Application

Shuffled artificial bee colony algorithm

Premium Partner

    Bildnachweise