Skip to main content
Erschienen in:

28.06.2023 | Original Paper

An online unscented Kalman filter remaining useful life prediction method applied to second-life lithium-ion batteries

verfasst von: Thomas S. N. Nunes, Jonathan J. P. Moura, Oclair G. Prado, Marcelo M. Camboim, Maria de Fatima N. Rosolem, Raul F. Beck, Camila Omae, Hongwu Ding

Erschienen in: Electrical Engineering | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In electric vehicles (EVs), because of the high current demand, lithium-ion batteries (LiBs) degradation makes the EVs suffer from limitations in their maximum autonomy and acceleration. Thus, after a certain point, the LiBs cannot continue to operate in these applications. However, after the LiB is removed from the EV, it still has about 80% of its nominal capacity available. Therefore, an interesting alternative to not discarding these LiBs is to reuse them in applications with lower current demand, such as power backup systems, this process is known as second-life. In second-life applications, due to the high degradation state of the LiBs, the need to implement an algorithm to estimate the remaining useful life (RUL) is necessary as it provides an aid to preventive maintenance. Many methods can be applied to estimate the RUL of LiBs; nevertheless, many of them require a large amount of training data, or are not suitable for embedded applications. Also, due to the nature of second-life LiBs, the degradation curve of these LiBs can be very unpredictable, and estimating their RUL is a challenge. In this context, this work proposes a method that employs an unscented Kalman filter (UKF) and a degradation curve model to perform online estimations of the RUL of second-life LiBs. The proposed algorithm was validated using experimental data that consists of the degradation curve of six distinct second-life LiBs. During the validation of the algorithm, in the worst-case scenario, a mean absolute percentage error (MAPE) and R2 score, equal to 5.279% and 0.726, were obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Matsushima T, Horie T (2006) Residual capacity estimation of stationary lithium-ion secondary cells in telecommunications systems using a brief discharge. In: INTELEC 06-twenty-eighth international telecommunications energy conference. pp 1–7 Matsushima T, Horie T (2006) Residual capacity estimation of stationary lithium-ion secondary cells in telecommunications systems using a brief discharge. In: INTELEC 06-twenty-eighth international telecommunications energy conference. pp 1–7
2.
Zurück zum Zitat Amira I, Guermazi A, Lahyani A (2018) Lithium-ion battery/supercapacitors combination in backup systems. In: 2018 15th international multi-conference on systems, signals and devices (SSD). pp 1117–1121 Amira I, Guermazi A, Lahyani A (2018) Lithium-ion battery/supercapacitors combination in backup systems. In: 2018 15th international multi-conference on systems, signals and devices (SSD). pp 1117–1121
3.
Zurück zum Zitat Nakamura M, Takeno K (2018) Green base station using robust solar system and high performance lithium ion battery for next generation wireless network (5G) and against mega disaster. In: 2018 international power electronics conference (IPEC-Niigata 2018-ECCE Asia). pp 201–206 Nakamura M, Takeno K (2018) Green base station using robust solar system and high performance lithium ion battery for next generation wireless network (5G) and against mega disaster. In: 2018 international power electronics conference (IPEC-Niigata 2018-ECCE Asia). pp 201–206
4.
Zurück zum Zitat Bruce G, Marcoux L (2001) Large lithium ion batteries for aerospace and aircraft applications. In: Sixteenth annual battery conference on applications and advances. Proceedings of the conference (Cat. No. 01TH8533). pp 147–151 Bruce G, Marcoux L (2001) Large lithium ion batteries for aerospace and aircraft applications. In: Sixteenth annual battery conference on applications and advances. Proceedings of the conference (Cat. No. 01TH8533). pp 147–151
5.
Zurück zum Zitat Marsh R, Vukson S, Surampudi S, Ratnakumar B, Smart M, Manzo M, Dalton P (2001) Li ion batteries for aerospace applications. J Power Sources 97:25–27CrossRef Marsh R, Vukson S, Surampudi S, Ratnakumar B, Smart M, Manzo M, Dalton P (2001) Li ion batteries for aerospace applications. J Power Sources 97:25–27CrossRef
6.
Zurück zum Zitat Hannan M, Hoque M, Hussain A, Yusof Y, Ker P (2018) State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: issues and recommendations. IEEE Access 6:19362–19378CrossRef Hannan M, Hoque M, Hussain A, Yusof Y, Ker P (2018) State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: issues and recommendations. IEEE Access 6:19362–19378CrossRef
7.
Zurück zum Zitat Chen W, Liang J, Yang Z, Li G (2019) A review of lithium-ion battery for electric vehicle applications and beyond. Energy Proc 158:4363–4368CrossRef Chen W, Liang J, Yang Z, Li G (2019) A review of lithium-ion battery for electric vehicle applications and beyond. Energy Proc 158:4363–4368CrossRef
8.
Zurück zum Zitat Chen K, Zhao F, Hao H, Liu Z (2019) Selection of lithium-ion battery technologies for electric vehicles under China’s new energy vehicle credit regulation. Energy Proc 158:3038–3044CrossRef Chen K, Zhao F, Hao H, Liu Z (2019) Selection of lithium-ion battery technologies for electric vehicles under China’s new energy vehicle credit regulation. Energy Proc 158:3038–3044CrossRef
9.
Zurück zum Zitat Sbordone D, Di Pietra B, Bocci E (2015) Energy analysis of a real grid connected lithium battery energy storage system. Energy Proc 75:1881–1887CrossRef Sbordone D, Di Pietra B, Bocci E (2015) Energy analysis of a real grid connected lithium battery energy storage system. Energy Proc 75:1881–1887CrossRef
10.
Zurück zum Zitat Tong S, Same A, Kootstra M, Park J (2013) Off-grid photovoltaic vehicle charge using second life lithium batteries: an experimental and numerical investigation. Appl Energy 104:740–750CrossRef Tong S, Same A, Kootstra M, Park J (2013) Off-grid photovoltaic vehicle charge using second life lithium batteries: an experimental and numerical investigation. Appl Energy 104:740–750CrossRef
11.
Zurück zum Zitat Jaiswal A (2017) Lithium-ion battery based renewable energy solution for off-grid electricity: a techno-economic analysis. Renew Sustain Energy Rev 72:922–934CrossRef Jaiswal A (2017) Lithium-ion battery based renewable energy solution for off-grid electricity: a techno-economic analysis. Renew Sustain Energy Rev 72:922–934CrossRef
12.
Zurück zum Zitat Swierczynski M, Stroe D, Stan A, Teodorescu R, Kær S (2015) Lifetime estimation of the nanophosphate LiFePO/C battery chemistry used in fully electric vehicles. IEEE Trans Ind Appl 51:3453–3461CrossRef Swierczynski M, Stroe D, Stan A, Teodorescu R, Kær S (2015) Lifetime estimation of the nanophosphate LiFePO/C battery chemistry used in fully electric vehicles. IEEE Trans Ind Appl 51:3453–3461CrossRef
14.
Zurück zum Zitat Stamps A, Holland C, White R, Gatzke E (2005) Analysis of capacity fade in a lithium ion battery. J Power Sources 150:229–239CrossRef Stamps A, Holland C, White R, Gatzke E (2005) Analysis of capacity fade in a lithium ion battery. J Power Sources 150:229–239CrossRef
15.
Zurück zum Zitat Cheng K, Divakar B, Wu H, Ding K, Ho H (2010) Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans Veh Technol 60:76–88CrossRef Cheng K, Divakar B, Wu H, Ding K, Ho H (2010) Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans Veh Technol 60:76–88CrossRef
16.
Zurück zum Zitat Mathews I, Xu B, He W, Barreto V, Buonassisi T, Peters I (2020) Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging. Appl Energy 269:115127CrossRef Mathews I, Xu B, He W, Barreto V, Buonassisi T, Peters I (2020) Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging. Appl Energy 269:115127CrossRef
17.
Zurück zum Zitat Casals L, García B, Canal C (2019) Second life batteries lifespan: rest of useful life and environmental analysis. J Environ Manage 232:354–363CrossRef Casals L, García B, Canal C (2019) Second life batteries lifespan: rest of useful life and environmental analysis. J Environ Manage 232:354–363CrossRef
18.
Zurück zum Zitat Kim J, Cho B (2011) State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system. IEEE Trans Veh Technol 60:4249–4260CrossRef Kim J, Cho B (2011) State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system. IEEE Trans Veh Technol 60:4249–4260CrossRef
19.
Zurück zum Zitat Plett G (2004) Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background. J Power Sources 134:252–261CrossRef Plett G (2004) Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background. J Power Sources 134:252–261CrossRef
20.
Zurück zum Zitat Xing Y, He W, Pecht M, Tsui K (2014) State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl Energy 113:106–115CrossRef Xing Y, He W, Pecht M, Tsui K (2014) State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl Energy 113:106–115CrossRef
21.
Zurück zum Zitat Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288CrossRef Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288CrossRef
22.
Zurück zum Zitat Liu D, Xie W, Liao H, Peng Y (2014) An integrated probabilistic approach to lithium-ion battery remaining useful life estimation. IEEE Trans Instrum Meas 64:660–670 Liu D, Xie W, Liao H, Peng Y (2014) An integrated probabilistic approach to lithium-ion battery remaining useful life estimation. IEEE Trans Instrum Meas 64:660–670
23.
Zurück zum Zitat Lam L, Bauer P (2012) Practical capacity fading model for Li-ion battery cells in electric vehicles. IEEE Trans Power Electron 28:5910–5918CrossRef Lam L, Bauer P (2012) Practical capacity fading model for Li-ion battery cells in electric vehicles. IEEE Trans Power Electron 28:5910–5918CrossRef
24.
Zurück zum Zitat Qu J, Liu F, Ma Y, Fan J (2019) A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery. IEEE Access 7:87178–87191CrossRef Qu J, Liu F, Ma Y, Fan J (2019) A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery. IEEE Access 7:87178–87191CrossRef
25.
Zurück zum Zitat Zhang Y, Xiong R, He H, Pecht M (2018) Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans Veh Technol 67:5695–5705CrossRef Zhang Y, Xiong R, He H, Pecht M (2018) Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans Veh Technol 67:5695–5705CrossRef
26.
Zurück zum Zitat Wu Y, Li W, Wang Y, Zhang K (2019) Remaining useful life prediction of lithium-ion batteries using neural network and bat-based particle filter. IEEE Access 7:54843–54854CrossRef Wu Y, Li W, Wang Y, Zhang K (2019) Remaining useful life prediction of lithium-ion batteries using neural network and bat-based particle filter. IEEE Access 7:54843–54854CrossRef
27.
Zurück zum Zitat Zhang H, Hu C, Kong X, Zhang W, Zhang Z (2014) Online updating with a wiener-process-based prediction model using UKF algorithm for remaining useful life estimation. In: 2014 prognostics and system health management conference (PHM-2014 Hunan). pp 305–309 Zhang H, Hu C, Kong X, Zhang W, Zhang Z (2014) Online updating with a wiener-process-based prediction model using UKF algorithm for remaining useful life estimation. In: 2014 prognostics and system health management conference (PHM-2014 Hunan). pp 305–309
28.
Zurück zum Zitat Cui X, Hu T (2020) State of health diagnosis and remaining useful life prediction for lithium-ion battery based on data model fusion method. IEEE Access 8:207298–207307CrossRef Cui X, Hu T (2020) State of health diagnosis and remaining useful life prediction for lithium-ion battery based on data model fusion method. IEEE Access 8:207298–207307CrossRef
29.
Zurück zum Zitat Li X, Peng L, Gao L, Bi D, Xie X, Xie Y (2019) A robust hybrid filtering method for accurate battery remaining useful life prediction. IEEE Access 7:57843–57856CrossRef Li X, Peng L, Gao L, Bi D, Xie X, Xie Y (2019) A robust hybrid filtering method for accurate battery remaining useful life prediction. IEEE Access 7:57843–57856CrossRef
30.
Zurück zum Zitat Duan B, Zhang Q, Geng F, Zhang C (2020) Remaining useful life prediction of lithium-ion battery based on extended Kalman particle filter. Int J Energy Res 44:1724–1734CrossRef Duan B, Zhang Q, Geng F, Zhang C (2020) Remaining useful life prediction of lithium-ion battery based on extended Kalman particle filter. Int J Energy Res 44:1724–1734CrossRef
31.
Zurück zum Zitat Andoni M, Tang W, Robu V, Flynn D (2017) Data analysis of battery storage systems. CIRED-Open Access Proc J 2017:96–99CrossRef Andoni M, Tang W, Robu V, Flynn D (2017) Data analysis of battery storage systems. CIRED-Open Access Proc J 2017:96–99CrossRef
32.
Zurück zum Zitat Miao Q, Xie L, Cui H, Liang W, Pecht M (2013) Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron Reliab 53:805–810CrossRef Miao Q, Xie L, Cui H, Liang W, Pecht M (2013) Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron Reliab 53:805–810CrossRef
33.
Zurück zum Zitat Sangwan V, Kumar R, Rathore A (2018) An empirical capacity degradation modeling and prognostics of remaining useful life of li-ion battery using unscented Kalman filter. In: 2018 8th IEEE india international conference on power electronics (IICPE). pp 1–6 Sangwan V, Kumar R, Rathore A (2018) An empirical capacity degradation modeling and prognostics of remaining useful life of li-ion battery using unscented Kalman filter. In: 2018 8th IEEE india international conference on power electronics (IICPE). pp 1–6
34.
Zurück zum Zitat Xiao Z, Fang H, Li Z, Chang Y (2019) Remaining useful life prediction of lithium-ion battery based on unscented kalman filter and back propagation neural network. In: 2019 IEEE 8th data driven control and learning systems conference (DDCLS). pp 47–52 Xiao Z, Fang H, Li Z, Chang Y (2019) Remaining useful life prediction of lithium-ion battery based on unscented kalman filter and back propagation neural network. In: 2019 IEEE 8th data driven control and learning systems conference (DDCLS). pp 47–52
35.
Zurück zum Zitat Li X, Zhang L, Wang Z, Dong P (2019) Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks. J Energy Storage 21:510–518CrossRef Li X, Zhang L, Wang Z, Dong P (2019) Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks. J Energy Storage 21:510–518CrossRef
36.
Zurück zum Zitat Saha B, Goebel K, Christophersen J (2009) Comparison of prognostic algorithms for estimating remaining useful life of batteries. Trans Inst Meas Control 31:293–308CrossRef Saha B, Goebel K, Christophersen J (2009) Comparison of prognostic algorithms for estimating remaining useful life of batteries. Trans Inst Meas Control 31:293–308CrossRef
37.
Zurück zum Zitat Wu J, Cheng X, Huang H, Fang C, Zhang L, Zhao X, Zhang L, Xing J (2023) Remaining useful life prediction of lithium-ion batteries based on PSO-RF algorithm. Process Energy Syst Eng 10:1–20 Wu J, Cheng X, Huang H, Fang C, Zhang L, Zhao X, Zhang L, Xing J (2023) Remaining useful life prediction of lithium-ion batteries based on PSO-RF algorithm. Process Energy Syst Eng 10:1–20
39.
Zurück zum Zitat Schlasza C, Ostertag P, Chrenko D, Kriesten R, Bouquain D (2014) Review on the aging mechanisms in Li-ion batteries for electric vehicles based on the FMEA method. In: 2014 IEEE transportation electrification conference and expo: components, systems, and power electronics - from technology to business and public policy, ITEC 2014. pp 1–6 Schlasza C, Ostertag P, Chrenko D, Kriesten R, Bouquain D (2014) Review on the aging mechanisms in Li-ion batteries for electric vehicles based on the FMEA method. In: 2014 IEEE transportation electrification conference and expo: components, systems, and power electronics - from technology to business and public policy, ITEC 2014. pp 1–6
Metadaten
Titel
An online unscented Kalman filter remaining useful life prediction method applied to second-life lithium-ion batteries
verfasst von
Thomas S. N. Nunes
Jonathan J. P. Moura
Oclair G. Prado
Marcelo M. Camboim
Maria de Fatima N. Rosolem
Raul F. Beck
Camila Omae
Hongwu Ding
Publikationsdatum
28.06.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 6/2023
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-023-01910-7