Skip to main content
Erschienen in: Wireless Networks 6/2020

19.04.2020

An optimal energy resource allocation framework for cellular networks with power grid interruptions

verfasst von: Maria O. Hanna, Mostafa F. Shaaban, Mahmoud H. Ismail, Mohamed S. Hassan

Erschienen in: Wireless Networks | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate the problem of optimal allocation of renewable energy resources to power base stations (BSs) in cellular networks while accounting for possible power failures in the utility grid. The allocation problem under investigation is formulated as a mixed integer non-linear programming, which is then decomposed, due to its complexity, and solved as two interdependent problems with the help of deterministic and metaheuristic techniques. We propose an allocation algorithm that jointly aims at optimizing the allocation of individualized green energy resources to simultaneously power the BSs with the grid as well as minimizing the overall system costs. Cost minimization is achieved by selecting the optimal types and sizes of the used photovoltaic (PV) panels and batteries in addition to optimally scheduling the charging and discharging of the selected batteries. This is done while limiting PV curtailment and any expected loss of cellular services at the times of power outage. Finally, the effectiveness of the proposed algorithm is demonstrated through the simulation of a sample case of a typical BS where Markov Chain Monte Carlo simulations are carried out to account for the uncertainty of the output of the PV panels and the grid failures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arnold, O., Richter, F., Fettweis, G., & Blume, O. (2010). Power consumption modeling of different base station types in heterogeneous cellular networks. In Future network and mobile summit, Florence, Italy, June 2010, pp. 1–8. Arnold, O., Richter, F., Fettweis, G., & Blume, O. (2010). Power consumption modeling of different base station types in heterogeneous cellular networks. In Future network and mobile summit, Florence, Italy, June 2010, pp. 1–8.
2.
Zurück zum Zitat Hassan, H. A., Nuaymi, L., & Pelov, A. (2013). Renewable energy in cellular networks: A survey. In 2013 IEEE Online Conference on Green Communications, Piscataway, NJ, October 2013, pp. 1–7. Hassan, H. A., Nuaymi, L., & Pelov, A. (2013). Renewable energy in cellular networks: A survey. In 2013 IEEE Online Conference on Green Communications, Piscataway, NJ, October 2013, pp. 1–7.
3.
Zurück zum Zitat Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey some research issues and challenges. IEEE Communications Surveys & Tutorials,13(4), 524–540. Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey some research issues and challenges. IEEE Communications Surveys & Tutorials,13(4), 524–540.
4.
Zurück zum Zitat Auer, G., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications,18(5), 40–49. Auer, G., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications,18(5), 40–49.
6.
Zurück zum Zitat Deruyck, M., Renga, D., Meo, M., & Martens, L. (2018). Accounting for the varying supply of solar energy when designing wireless access networks. IEEE Transactions on Green Communications and Networking,2(1), 275–290. Deruyck, M., Renga, D., Meo, M., & Martens, L. (2018). Accounting for the varying supply of solar energy when designing wireless access networks. IEEE Transactions on Green Communications and Networking,2(1), 275–290.
7.
Zurück zum Zitat Renga, D., Hassan, H., Meo, M., & Nuaymi, L. (2018). Energy management and Base Station on/off switching in green mobile networks for offering ancillary services. IEEE Transactions on Green Communications and Networking,2(3), 868–880. Renga, D., Hassan, H., Meo, M., & Nuaymi, L. (2018). Energy management and Base Station on/off switching in green mobile networks for offering ancillary services. IEEE Transactions on Green Communications and Networking,2(3), 868–880.
8.
Zurück zum Zitat Mowla, M., Ahmad, I., Habibi, D., & Phung, Q. (2017). A green communication model for 5G systems. IEEE Transactions on Green Communications and Networking,1(3), 264–280. Mowla, M., Ahmad, I., Habibi, D., & Phung, Q. (2017). A green communication model for 5G systems. IEEE Transactions on Green Communications and Networking,1(3), 264–280.
9.
Zurück zum Zitat Labidi, W., Chahed, T., & Elayoubi, S. (2018). Optimal battery management strategies in mobile networks powered by a smart grid. IEEE Transactions on Green Communications and Networking,2(3), 859–867. Labidi, W., Chahed, T., & Elayoubi, S. (2018). Optimal battery management strategies in mobile networks powered by a smart grid. IEEE Transactions on Green Communications and Networking,2(3), 859–867.
10.
Zurück zum Zitat Li, Y., Zhang, H., Wang, J., Cao, B., Liu, Q., & Daneshmand, M. (2019). Energy-Efficient deployment and adaptive sleeping in heterogeneous cellular networks. IEEE Access,7, 35838–35850. Li, Y., Zhang, H., Wang, J., Cao, B., Liu, Q., & Daneshmand, M. (2019). Energy-Efficient deployment and adaptive sleeping in heterogeneous cellular networks. IEEE Access,7, 35838–35850.
11.
Zurück zum Zitat Li, Y., Celebi, H., Daneshmand, M., Wang, C., & Zhao, W. (2013). Energy-efficient femtocell networks: Challenges and opportunities. IEEE Wireless Communications,20(6), 99–105. Li, Y., Celebi, H., Daneshmand, M., Wang, C., & Zhao, W. (2013). Energy-efficient femtocell networks: Challenges and opportunities. IEEE Wireless Communications,20(6), 99–105.
12.
Zurück zum Zitat Li, Y., Zhu, X., Liao, C., Wang, C., & Cao, B. (2015). Energy efficiency maximization by jointly optimizing the positions and serving range of relay stations in cellular networks. IEEE Transactions on Vehicular Technology,64(6), 2551–2560. Li, Y., Zhu, X., Liao, C., Wang, C., & Cao, B. (2015). Energy efficiency maximization by jointly optimizing the positions and serving range of relay stations in cellular networks. IEEE Transactions on Vehicular Technology,64(6), 2551–2560.
13.
Zurück zum Zitat Li, Y., Liao, C., Wang, Y., & Wang, C. (2015). Energy-efficient optimal relay selection in cooperative cellular networks based on double auction. IEEE Transactions on Wireless Communications,14(8), 4093–4104. Li, Y., Liao, C., Wang, Y., & Wang, C. (2015). Energy-efficient optimal relay selection in cooperative cellular networks based on double auction. IEEE Transactions on Wireless Communications,14(8), 4093–4104.
14.
Zurück zum Zitat Marsan, M. A., Bucalo, G., Di Caro, A., Meo, M., & Zhang, Y. (2013). Towards zero grid electricity networking: Powering BSs with renewable energy sources. In Proceedings of IEEE International Conference on Communications (ICC) Workshops (ICC), Budapest, Hungary, October 2013, pp. 596–601. Marsan, M. A., Bucalo, G., Di Caro, A., Meo, M., & Zhang, Y. (2013). Towards zero grid electricity networking: Powering BSs with renewable energy sources. In Proceedings of IEEE International Conference on Communications (ICC) Workshops (ICC), Budapest, Hungary, October 2013, pp. 596–601.
15.
Zurück zum Zitat Zheng, M., Pawelczak, P., Stanczak, S., & Yu, H. (2013). Planning of cellular networks enhanced by energy harvesting. IEEE Communications Letters,17(6), 1092–1095. Zheng, M., Pawelczak, P., Stanczak, S., & Yu, H. (2013). Planning of cellular networks enhanced by energy harvesting. IEEE Communications Letters,17(6), 1092–1095.
16.
Zurück zum Zitat Kaur, R., Krishnasamy, V., & Kandasamy, N. K. (2018). Optimal sizing of wind—PV-based DC microgrid for telecom power supply in remote areas. IET Renewable Power Generation,12(7), 859–866. Kaur, R., Krishnasamy, V., & Kandasamy, N. K. (2018). Optimal sizing of wind—PV-based DC microgrid for telecom power supply in remote areas. IET Renewable Power Generation,12(7), 859–866.
17.
Zurück zum Zitat Goud, J. S., & Kalpana, R. (2017). Optimal sizing of hybrid power supply system for telecommunication BTS load to ensure reliable power at lower cost. In 2017 international conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, 2017, pp. 1–6. Goud, J. S., & Kalpana, R. (2017). Optimal sizing of hybrid power supply system for telecommunication BTS load to ensure reliable power at lower cost. In 2017 international conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, 2017, pp. 1–6.
18.
Zurück zum Zitat Renga, D., & Meo, M. (2019). Dimensioning renewable energy systems to power mobile networks. IEEE Transactions on Green Communications and Networking,3(2), 366–380. Renga, D., & Meo, M. (2019). Dimensioning renewable energy systems to power mobile networks. IEEE Transactions on Green Communications and Networking,3(2), 366–380.
19.
Zurück zum Zitat Xu, F., Li, Y., Wang, H., Zhang, P., & Jin, D. (2017). Understanding mobile traffic patterns of large scale cellular towers in urban environment. IEEE/ACM Transactions on Networking,25(2), 1147–1161. Xu, F., Li, Y., Wang, H., Zhang, P., & Jin, D. (2017). Understanding mobile traffic patterns of large scale cellular towers in urban environment. IEEE/ACM Transactions on Networking,25(2), 1147–1161.
20.
Zurück zum Zitat Peng, C., Lee, S., Lu, S., Luo, H., & Li, H. (2011). Traffic-driven power saving in operational 3G cellular networks. In Proceedings of 17th annual international conference on Mobile computing and networking (MobiCom’11), Nevada, USA, September 2011, pp. 121–132. Peng, C., Lee, S., Lu, S., Luo, H., & Li, H. (2011). Traffic-driven power saving in operational 3G cellular networks. In Proceedings of 17th annual international conference on Mobile computing and networking (MobiCom’11), Nevada, USA, September 2011, pp. 121–132.
21.
Zurück zum Zitat Marsan, M., Chiaraviglio, L., Ciullo, D., & Meo, M. (2012). Multiple daily base station switch-offs in cellular networks. In Proceedings of 2012 fourth International Conference on Communications and Electronics (ICCE), Hue, Vietnam, August 2012, , pp. 245–250. Marsan, M., Chiaraviglio, L., Ciullo, D., & Meo, M. (2012). Multiple daily base station switch-offs in cellular networks. In Proceedings of 2012 fourth International Conference on Communications and Electronics (ICCE), Hue, Vietnam, August 2012, , pp. 245–250.
22.
Zurück zum Zitat Lorincz, J., Garma, T., & Petrovic, G. (2012). Measurements and modelling of base station power consumption under real traffic loads. Sensors,12(4), 4281–4310. Lorincz, J., Garma, T., & Petrovic, G. (2012). Measurements and modelling of base station power consumption under real traffic loads. Sensors,12(4), 4281–4310.
23.
Zurück zum Zitat Bao, L., Wang, J., & Kang, L. (2012). The applied effect analysis of heat exchanger installed in a typical communication base station in Beijing of China. Energy Procedia,14, 620–625. Bao, L., Wang, J., & Kang, L. (2012). The applied effect analysis of heat exchanger installed in a typical communication base station in Beijing of China. Energy Procedia,14, 620–625.
24.
Zurück zum Zitat Zheng, K., Liu, J., Xin, S., & Zhang, J. (2015). Simulation of wind power time series based on the MCMC method. In IEEE 5th international conference on electric utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China, November 2015. Zheng, K., Liu, J., Xin, S., & Zhang, J. (2015). Simulation of wind power time series based on the MCMC method. In IEEE 5th international conference on electric utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China, November 2015.
25.
Zurück zum Zitat Kandil, S., Farag, H., Shaaban, M., & El-Sharafy, M. (2018). A combined resource allocation framework for PEVs charging stations, renewable energy resources and distributed energy storage systems. Energy,143, 961–972. Kandil, S., Farag, H., Shaaban, M., & El-Sharafy, M. (2018). A combined resource allocation framework for PEVs charging stations, renewable energy resources and distributed energy storage systems. Energy,143, 961–972.
26.
Zurück zum Zitat Masters, G. (2013). Renewable and efficient electric power systems (2nd ed.). Hoboken: Wiley. Masters, G. (2013). Renewable and efficient electric power systems (2nd ed.). Hoboken: Wiley.
27.
Zurück zum Zitat Balducci, P. J., Roop, J. M., Schienbein, L. A., DeSteese, J. G., & Weimar, M. R. (2002). Electric power interruption cost estimates for individual industries, sectors, and US Economy. No. PNNL-13797. Pacific Northwest National Laboratory (PNNL), Richland, WA, 2002. Balducci, P. J., Roop, J. M., Schienbein, L. A., DeSteese, J. G., & Weimar, M. R. (2002). Electric power interruption cost estimates for individual industries, sectors, and US Economy. No. PNNL-13797. Pacific Northwest National Laboratory (PNNL), Richland, WA, 2002.
28.
Zurück zum Zitat Golden, R., & Paulos, B. (2015). Curtailment of renewable energy in California and beyond. The Electricity Journal,28(6), 36–50. Golden, R., & Paulos, B. (2015). Curtailment of renewable energy in California and beyond. The Electricity Journal,28(6), 36–50.
29.
Zurück zum Zitat Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., & Mahajan, A. (2013). Mixed-integer nonlinear optimization. Acta Numerica,22, 1–131.MathSciNetMATH Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., & Mahajan, A. (2013). Mixed-integer nonlinear optimization. Acta Numerica,22, 1–131.MathSciNetMATH
30.
Zurück zum Zitat Kannan, R., & Monma, C. (1978). On the computational complexity of integer programming problems. In R. Henn, B. Korte, & W. Oettli (Eds.), Optimization and operations research, Volume 157 of lecture notes in economics and mathematical systems (pp. 161–172). Berlin: Springer. Kannan, R., & Monma, C. (1978). On the computational complexity of integer programming problems. In R. Henn, B. Korte, & W. Oettli (Eds.), Optimization and operations research, Volume 157 of lecture notes in economics and mathematical systems (pp. 161–172). Berlin: Springer.
31.
Zurück zum Zitat Kannan, S., Slochanal, S. M. R., & Padhy, N. P. (2005). Application and comparison of metaheuristic techniques to generation expansion planning problem. IEEE Transactions on Power Systems,20(1), 466–475. Kannan, S., Slochanal, S. M. R., & Padhy, N. P. (2005). Application and comparison of metaheuristic techniques to generation expansion planning problem. IEEE Transactions on Power Systems,20(1), 466–475.
32.
Zurück zum Zitat Rosenthal, E. (2008). GAMS—A user’s guide. GAMS Development Corporation. Rosenthal, E. (2008). GAMS—A user’s guide. GAMS Development Corporation.
34.
Zurück zum Zitat Atwa, Y. M., El-Saadany, E. F., Salama, M. M. A., & Seethapathy, R. (2010). Optimal renewable resources mix for distribution system energy loss minimization. IEEE Transactions on Power Systems,25(1), 360–370. Atwa, Y. M., El-Saadany, E. F., Salama, M. M. A., & Seethapathy, R. (2010). Optimal renewable resources mix for distribution system energy loss minimization. IEEE Transactions on Power Systems,25(1), 360–370.
Metadaten
Titel
An optimal energy resource allocation framework for cellular networks with power grid interruptions
verfasst von
Maria O. Hanna
Mostafa F. Shaaban
Mahmoud H. Ismail
Mohamed S. Hassan
Publikationsdatum
19.04.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02333-z

Weitere Artikel der Ausgabe 6/2020

Wireless Networks 6/2020 Zur Ausgabe

Neuer Inhalt