Skip to main content
Erschienen in: Neural Computing and Applications 12/2018

12.11.2016 | Original Article

An optimal solution for magnetohydrodynamic nanofluid flow over a stretching surface with constant heat flux and zero nanoparticles flux

verfasst von: Tasawar Hayat, Zakir Hussain, Ahmed Alsaedi, Taseer Muhammad

Erschienen in: Neural Computing and Applications | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article examines the hydromagnetic three-dimensional flow of viscous nanoliquid. A bidirectional linear stretching surface has been used to create the flow. Novel features regarding Brownian motion and thermophoresis have been studied by employing Buongiorno model to examine the slip velocity of nanoparticle. Viscous liquid is electrically conducting subject to uniform applied magnetic field. Problem formulation in boundary-layer region is performed for low magnetic Reynolds number. Simultaneous effects of constant heat flux and zero nanoparticles flux conditions are utilized at boundary. Appropriate transformations correspond to the strongly nonlinear ordinary differential expressions. The resulting nonlinear systems have been solved through the optimal homotopy analysis method. Graphs have been sketched in order to analyze that how the temperature and concentration profiles are affected by various physical parameters. Further the coefficients of skin-friction and heat transfer rate have been numerically computed and discussed. Our findings show that the temperature distribution has a direct relationship with the magnetic parameter. Moreover, the temperature distribution and thermal boundary-layer thickness are higher for hydromagnetic flow in comparison with the hydrodynamic flow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles, USA, ASME, FED 231/MD, vol 66, pp 99–105 Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles, USA, ASME, FED 231/MD, vol 66, pp 99–105
2.
Zurück zum Zitat Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250CrossRef Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250CrossRef
3.
Zurück zum Zitat Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci 50:1326–1332CrossRef Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci 50:1326–1332CrossRef
4.
Zurück zum Zitat Turkyilmazoglu M (2012) Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids. Chem Eng Sci 84:182–187CrossRef Turkyilmazoglu M (2012) Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids. Chem Eng Sci 84:182–187CrossRef
5.
Zurück zum Zitat Goodarzi M, Safaei MR, Vafai K, Ahmadi G, Dahari M, Kazi SN, Jomhari N (2014) Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci 75:204–220CrossRef Goodarzi M, Safaei MR, Vafai K, Ahmadi G, Dahari M, Kazi SN, Jomhari N (2014) Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci 75:204–220CrossRef
6.
Zurück zum Zitat Kuznetsov AV, Nield DA (2014) Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int J Therm Sci 77:126–129CrossRef Kuznetsov AV, Nield DA (2014) Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int J Therm Sci 77:126–129CrossRef
7.
Zurück zum Zitat Sheikholeslami M, Bandpy MG, Ellahi R, Hassan M, Soleimani S (2014) Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM. J Magn Magn Mater 349:188–200CrossRef Sheikholeslami M, Bandpy MG, Ellahi R, Hassan M, Soleimani S (2014) Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM. J Magn Magn Mater 349:188–200CrossRef
8.
Zurück zum Zitat Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater 374:36–43CrossRef Sheikholeslami M, Ganji DD, Javed MY, Ellahi R (2015) Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater 374:36–43CrossRef
9.
Zurück zum Zitat Malvandi A, Safaei MR, Kaffash MH, Ganji DD (2015) MHD mixed convection in a vertical annulus filled with Al2O3-water nanofluid considering nanoparticle migration. J Magn Magn Mater 382:296–306CrossRef Malvandi A, Safaei MR, Kaffash MH, Ganji DD (2015) MHD mixed convection in a vertical annulus filled with Al2O3-water nanofluid considering nanoparticle migration. J Magn Magn Mater 382:296–306CrossRef
10.
Zurück zum Zitat Hayat T, Muhammad T, Alsaedi A, Alhuthali MS (2015) Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. J Magn Magn Mater 385:222–229CrossRef Hayat T, Muhammad T, Alsaedi A, Alhuthali MS (2015) Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. J Magn Magn Mater 385:222–229CrossRef
11.
Zurück zum Zitat Goodarzi M, Amiri A, Goodarzi MS, Safaei MR, Karimipour A, Languri EM, Dahari M (2015) Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids. Int Commun Heat Mass Transf 66:172–179CrossRef Goodarzi M, Amiri A, Goodarzi MS, Safaei MR, Karimipour A, Languri EM, Dahari M (2015) Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids. Int Commun Heat Mass Transf 66:172–179CrossRef
12.
Zurück zum Zitat Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu-H2O nanofluid on entropy generation. Int J Heat Mass Transf 81:449–456CrossRef Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu-H2O nanofluid on entropy generation. Int J Heat Mass Transf 81:449–456CrossRef
13.
Zurück zum Zitat Gireesha BJ, Gorla RSR, Mahanthesh B (2015) Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring–Powell fluid over a stretching sheet. J. Nanofluids 4:474–484CrossRef Gireesha BJ, Gorla RSR, Mahanthesh B (2015) Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring–Powell fluid over a stretching sheet. J. Nanofluids 4:474–484CrossRef
14.
Zurück zum Zitat Hayat T, Imtiaz M, Alsaedi A (2015) MHD 3D flow of nanofluid in presence of convective conditions. J Mol Liq 212:203–208CrossRef Hayat T, Imtiaz M, Alsaedi A (2015) MHD 3D flow of nanofluid in presence of convective conditions. J Mol Liq 212:203–208CrossRef
15.
Zurück zum Zitat Togun H, Ahmadi G, Abdulrazzaq T, Shkarah AJ, Kazi SN, Badarudin A, Safaei MR (2015) Thermal performance of nanofluid in ducts with double forward-facing steps. J Taiwan Inst Chem Eng 47:28–42CrossRef Togun H, Ahmadi G, Abdulrazzaq T, Shkarah AJ, Kazi SN, Badarudin A, Safaei MR (2015) Thermal performance of nanofluid in ducts with double forward-facing steps. J Taiwan Inst Chem Eng 47:28–42CrossRef
16.
Zurück zum Zitat Hayat T, Muhammad T, Shehzad SA, Chen GQ, Abbas IA (2015) Interaction of magnetic field in flow of Maxwell nanofluid with convective effect. J Magn Magn Mater 389:48–55CrossRef Hayat T, Muhammad T, Shehzad SA, Chen GQ, Abbas IA (2015) Interaction of magnetic field in flow of Maxwell nanofluid with convective effect. J Magn Magn Mater 389:48–55CrossRef
17.
Zurück zum Zitat Sheikholeslami M, Ellahi R (2015) Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Appl Sci 5:294–306CrossRef Sheikholeslami M, Ellahi R (2015) Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Appl Sci 5:294–306CrossRef
18.
Zurück zum Zitat Khan U, Ahmed N, Mohyud-Din ST, Bin-Mohsin B (2016) Nonlinear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge. Neural Comput Appl. doi:10.1007/s00521-016-2187-x Khan U, Ahmed N, Mohyud-Din ST, Bin-Mohsin B (2016) Nonlinear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge. Neural Comput Appl. doi:10.​1007/​s00521-016-2187-x
19.
Zurück zum Zitat Prabhakar B, Bandari S, Haq RU (2016) Impact of inclined Lorentz forces on tangent hyperbolic nanofluid flow with zero normal flux of nanoparticles at the stretching sheet. Neural Comput Appl. doi:10.1007/s00521-016-2601-4 Prabhakar B, Bandari S, Haq RU (2016) Impact of inclined Lorentz forces on tangent hyperbolic nanofluid flow with zero normal flux of nanoparticles at the stretching sheet. Neural Comput Appl. doi:10.​1007/​s00521-016-2601-4
20.
Zurück zum Zitat Hayat T, Ullah I, Muhammad T, Alsaedi A, Shehzad SA (2016) Three-dimensional flow of Powell–Eyring nanofluid with heat and mass flux boundary conditions. Chin Phys B 25:074701CrossRef Hayat T, Ullah I, Muhammad T, Alsaedi A, Shehzad SA (2016) Three-dimensional flow of Powell–Eyring nanofluid with heat and mass flux boundary conditions. Chin Phys B 25:074701CrossRef
21.
Zurück zum Zitat Rahman SU, Ellahi R, Nadeem S, Zia QMZ (2016) Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis. J Mol Liq 218:484–493CrossRef Rahman SU, Ellahi R, Nadeem S, Zia QMZ (2016) Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis. J Mol Liq 218:484–493CrossRef
22.
Zurück zum Zitat Akbarzadeh M, Rashidi S, Bovand M, Ellahi R (2016) A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. J Mol Liq 220:1–13CrossRef Akbarzadeh M, Rashidi S, Bovand M, Ellahi R (2016) A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. J Mol Liq 220:1–13CrossRef
23.
Zurück zum Zitat Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, Dalkılıça AS, Wongwises S (2016) Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf 73:114–123CrossRef Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, Dalkılıça AS, Wongwises S (2016) Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf 73:114–123CrossRef
24.
Zurück zum Zitat Hayat T, Aziz A, Muhammad T, Alsaedi A (2016) On magnetohydrodynamic three-dimensional flow of nanofluid over a convectively heated nonlinear stretching surface. Int J Heat Mass Transf 100:566–572CrossRef Hayat T, Aziz A, Muhammad T, Alsaedi A (2016) On magnetohydrodynamic three-dimensional flow of nanofluid over a convectively heated nonlinear stretching surface. Int J Heat Mass Transf 100:566–572CrossRef
25.
Zurück zum Zitat Hayat T, Waqas M, Khan MI, Alsaedi A (2016) Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects. Int J Heat Mass Transf 102:1123–1129CrossRef Hayat T, Waqas M, Khan MI, Alsaedi A (2016) Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects. Int J Heat Mass Transf 102:1123–1129CrossRef
26.
Zurück zum Zitat Sakiadis BC (1961) Boundary-layer behaviour on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AIChE J 7:221–225CrossRef Sakiadis BC (1961) Boundary-layer behaviour on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AIChE J 7:221–225CrossRef
27.
Zurück zum Zitat Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21:645–647CrossRef Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21:645–647CrossRef
29.
Zurück zum Zitat Ariel PD (2007) The three-dimensional flow past a stretching sheet and the homotopy perturbation method. Comput Math Appl 54:920–925MathSciNetCrossRefMATH Ariel PD (2007) The three-dimensional flow past a stretching sheet and the homotopy perturbation method. Comput Math Appl 54:920–925MathSciNetCrossRefMATH
30.
Zurück zum Zitat Xu H, Liao SJ, Pop I (2007) Series solutions of unsteady three-dimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate. Eur J Mech B Fluids 26:15–27MathSciNetCrossRefMATH Xu H, Liao SJ, Pop I (2007) Series solutions of unsteady three-dimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate. Eur J Mech B Fluids 26:15–27MathSciNetCrossRefMATH
31.
Zurück zum Zitat Hayat T, Qasim M, Abbas Z (2010) Homotopy solution for the unsteady three-dimensional MHD flow and mass transfer in a porous space. Commun Nonlinear Sci Numer Simul 15:2375–2387MathSciNetCrossRefMATH Hayat T, Qasim M, Abbas Z (2010) Homotopy solution for the unsteady three-dimensional MHD flow and mass transfer in a porous space. Commun Nonlinear Sci Numer Simul 15:2375–2387MathSciNetCrossRefMATH
32.
Zurück zum Zitat Liu IC, Wang HH, Peng YF (2013) Flow and heat transfer for three-dimensional flow over an exponentially stretching surface. Chem Eng Commun 200:253–268CrossRef Liu IC, Wang HH, Peng YF (2013) Flow and heat transfer for three-dimensional flow over an exponentially stretching surface. Chem Eng Commun 200:253–268CrossRef
33.
Zurück zum Zitat Hayat T, Muhammad T, Shehzad SA, Alsaedi A (2015) Soret and Dufour effects in three-dimensional flow over an exponentially stretching surface with porous medium, chemical reaction and heat source/sink. Int J Numer Methods Heat Fluid Flow 25:762–781MathSciNetCrossRefMATH Hayat T, Muhammad T, Shehzad SA, Alsaedi A (2015) Soret and Dufour effects in three-dimensional flow over an exponentially stretching surface with porous medium, chemical reaction and heat source/sink. Int J Numer Methods Heat Fluid Flow 25:762–781MathSciNetCrossRefMATH
34.
Zurück zum Zitat Liao SJ (2010) An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul 15:2003–2016MathSciNetCrossRefMATH Liao SJ (2010) An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul 15:2003–2016MathSciNetCrossRefMATH
35.
Zurück zum Zitat Dehghan M, Manafian J, Saadatmandi A (2010) Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Differ Equ 26:448–479MathSciNetMATH Dehghan M, Manafian J, Saadatmandi A (2010) Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Differ Equ 26:448–479MathSciNetMATH
36.
Zurück zum Zitat Turkyilmazoglu M (2012) Solution of the Thomas–Fermi equation with a convergent approach. Commun Nonlinear Sci Numer Simul 17:4097–4103MathSciNetCrossRefMATH Turkyilmazoglu M (2012) Solution of the Thomas–Fermi equation with a convergent approach. Commun Nonlinear Sci Numer Simul 17:4097–4103MathSciNetCrossRefMATH
37.
Zurück zum Zitat Abbasbandy S, Hayat T, Alsaedi A, Rashidi MM (2014) Numerical and analytical solutions for Falkner–Skan flow of MHD Oldroyd-B fluid. Int J. Numer Methods Heat Fluid Flow 24:390–401MathSciNetCrossRefMATH Abbasbandy S, Hayat T, Alsaedi A, Rashidi MM (2014) Numerical and analytical solutions for Falkner–Skan flow of MHD Oldroyd-B fluid. Int J. Numer Methods Heat Fluid Flow 24:390–401MathSciNetCrossRefMATH
38.
Zurück zum Zitat Zeeshan A, Majeed A, Ellahi R (2016) Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. J Mol Liq 215:549–554CrossRef Zeeshan A, Majeed A, Ellahi R (2016) Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. J Mol Liq 215:549–554CrossRef
39.
Zurück zum Zitat Hayat T, Hussain Z, Muhammad T, Alsaedi A (2016) Effects of homogeneous and heterogeneous reactions in flow of nanofluids over a nonlinear stretching surface with variable surface thickness. J Mol Liq 221:1121–1127CrossRef Hayat T, Hussain Z, Muhammad T, Alsaedi A (2016) Effects of homogeneous and heterogeneous reactions in flow of nanofluids over a nonlinear stretching surface with variable surface thickness. J Mol Liq 221:1121–1127CrossRef
40.
Zurück zum Zitat Hayat T, Muhammad T, Shehzad SA, Alsaedi A (2016) On three-dimensional boundary layer flow of Sisko nanofluid with magnetic field effects. Adv Powder Technol 27:504–512CrossRef Hayat T, Muhammad T, Shehzad SA, Alsaedi A (2016) On three-dimensional boundary layer flow of Sisko nanofluid with magnetic field effects. Adv Powder Technol 27:504–512CrossRef
Metadaten
Titel
An optimal solution for magnetohydrodynamic nanofluid flow over a stretching surface with constant heat flux and zero nanoparticles flux
verfasst von
Tasawar Hayat
Zakir Hussain
Ahmed Alsaedi
Taseer Muhammad
Publikationsdatum
12.11.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 12/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2685-x

Weitere Artikel der Ausgabe 12/2018

Neural Computing and Applications 12/2018 Zur Ausgabe