Skip to main content
Erschienen in:

10.12.2019

An Optimal Weight Semi-Supervised Learning Machine for Neural Networks with Time Delay

verfasst von: Chengbo Lu, Ying Mei

Erschienen in: Journal of Classification | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, an optimal weight semi-supervised learning machine for a single-hidden layer feedforward network (SLFN) with time delay is developed. Both input weights and output weights of the SLFN are globally optimized with manifold regularization. By feature mapping, input vectors can be placed at the prescribed positions in the feature space in the sense that the separability of all nonlinearly separable patterns can be maximized, unlabeled data can be leveraged to improve the classification accuracy when labeled data are scarce, and a high degree of recognition accuracy can be achieved with a small number of hidden nodes in the SLFN. Some simulation examples are presented to show the excellent performance of the proposed algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat M. Belkin, I. Matveeva, P. Niyogi, Regularization and semi-supervised learning on large graphs, in: Proceedings of 17th conference on learning theory (COLT), 2004. M. Belkin, I. Matveeva, P. Niyogi, Regularization and semi-supervised learning on large graphs, in: Proceedings of 17th conference on learning theory (COLT), 2004.
Zurück zum Zitat Bishop, C. M. (1995). Neural networks for pattern recognition. New York: Oxford. University Press Inc.MATH Bishop, C. M. (1995). Neural networks for pattern recognition. New York: Oxford. University Press Inc.MATH
Zurück zum Zitat Chen, Y., Xue, A. K., Lu, R. Q., & Zhou, S. S. (2008). On robustly exponential stability of uncertain neutral systems with time-varying delays and nonlinear perturbations. Nonlinear Analysis, 68, 2464–2470.MathSciNetCrossRef Chen, Y., Xue, A. K., Lu, R. Q., & Zhou, S. S. (2008). On robustly exponential stability of uncertain neutral systems with time-varying delays and nonlinear perturbations. Nonlinear Analysis, 68, 2464–2470.MathSciNetCrossRef
Zurück zum Zitat Chen, Y., Lu, R. Q., Zou, H. B., & Xue, A. K. (2014). Stability analysis for stochastic jump systems with time-varying delay. Nonlinear Analysis: Hybrid Systems, 14, 114–125.MathSciNetMATH Chen, Y., Lu, R. Q., Zou, H. B., & Xue, A. K. (2014). Stability analysis for stochastic jump systems with time-varying delay. Nonlinear Analysis: Hybrid Systems, 14, 114–125.MathSciNetMATH
Zurück zum Zitat L. Devroye, L. Gyorfi, And G. Lugosi, A probabilistic theory of pattern recognition. New York: Springer-Verlag, 1996.CrossRef L. Devroye, L. Gyorfi, And G. Lugosi, A probabilistic theory of pattern recognition. New York: Springer-Verlag, 1996.CrossRef
Zurück zum Zitat Duda, R., & Hart, P. (1973). Pattern classification and scene analysis. New York: Wiley.MATH Duda, R., & Hart, P. (1973). Pattern classification and scene analysis. New York: Wiley.MATH
Zurück zum Zitat Huang, G. B., Zhu, Q. Y., & Siew, C. K. (Dec. 2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1–3), 489–501.CrossRef Huang, G. B., Zhu, Q. Y., & Siew, C. K. (Dec. 2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1–3), 489–501.CrossRef
Zurück zum Zitat Huang, G., Song, S., Gupta, J. N. D., & Wu, C. (2014). Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, 44(12), 2405–2417.CrossRef Huang, G., Song, S., Gupta, J. N. D., & Wu, C. (2014). Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, 44(12), 2405–2417.CrossRef
Zurück zum Zitat Liu, J., Chen, Y., Liu, M., & Zhao, Z. (2011). SELM: semi-supervised ELM with application in sparse calibrated location estimation. Neurocomputing, 74(16), 2566–2572.CrossRef Liu, J., Chen, Y., Liu, M., & Zhao, Z. (2011). SELM: semi-supervised ELM with application in sparse calibrated location estimation. Neurocomputing, 74(16), 2566–2572.CrossRef
Zurück zum Zitat Man, Z., Lee, K., Wang, D. H., Cao, Z., & Miao, C. (2011). A new robust training algorithm for a class of single hidden layer neural networks. Neurocomputing, 74, 2491–2501.CrossRef Man, Z., Lee, K., Wang, D. H., Cao, Z., & Miao, C. (2011). A new robust training algorithm for a class of single hidden layer neural networks. Neurocomputing, 74, 2491–2501.CrossRef
Zurück zum Zitat Man, Z., Lee, K., Wang, D., Cao, Z., & Khoo, S. (2013). An optimal weight learning machine for handwritten digit image recognition. Signal Processing, 93(6), 1624–1638.CrossRef Man, Z., Lee, K., Wang, D., Cao, Z., & Khoo, S. (2013). An optimal weight learning machine for handwritten digit image recognition. Signal Processing, 93(6), 1624–1638.CrossRef
Zurück zum Zitat Vapnik, V. (1998). Statistical learning theory. New York: Wiley.MATH Vapnik, V. (1998). Statistical learning theory. New York: Wiley.MATH
Zurück zum Zitat Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. (1989). Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(3), 328–339.CrossRef Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. (1989). Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(3), 328–339.CrossRef
Zurück zum Zitat Z. G. Wu, H. Su, J Chu, W. N. Zhou. Improved delay-dependent stability condition of discrete recurrent neural networks with time-varying delays, IEEE Transactions on Neural Networks, 21(4): 692–697, 2010. Z. G. Wu, H. Su, J Chu, W. N. Zhou. Improved delay-dependent stability condition of discrete recurrent neural networks with time-varying delays, IEEE Transactions on Neural Networks, 21(4): 692–697, 2010.
Zurück zum Zitat Wu, Z. G., Lam, J., Su, H. Y., & Chu, J. (2012). Stability and dissipativity analysis of static neural networks with time delay. IEEE Transactions on Neural Networks and Learning Systems, 23(2), 199–210.CrossRef Wu, Z. G., Lam, J., Su, H. Y., & Chu, J. (2012). Stability and dissipativity analysis of static neural networks with time delay. IEEE Transactions on Neural Networks and Learning Systems, 23(2), 199–210.CrossRef
Metadaten
Titel
An Optimal Weight Semi-Supervised Learning Machine for Neural Networks with Time Delay
verfasst von
Chengbo Lu
Ying Mei
Publikationsdatum
10.12.2019
Verlag
Springer US
Erschienen in
Journal of Classification / Ausgabe 3/2020
Print ISSN: 0176-4268
Elektronische ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-019-09352-2