Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 2/2018

07.02.2018 | RESEARCH PAPER

An optimality criteria-based algorithm for efficient design optimization of laminated composites using concurrent resizing and scaling

verfasst von: Ralph Kussmaul, Markus Zogg, Paolo Ermanni

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Numerical optimization is an indispensable part of the design process of laminated composite structures. Several optimality criteria-based algorithms exist which rely on a sequential resizing and scaling approach. This paper presents a novel design algorithm applicable for stiffness and eigenfrequency optimization of composite structures with concurrent consideration of resizing and scaling operations. A method is introduced that allows for an efficient consideration of nonlinear constraints. This is done by determining stable concurrent scaling parameters from first-order constraint change ratio estimations. Optimization is carried out using optimality criteria in three independent steps, namely with respect to fiber angles, ply thickness ratios, and total laminate thickness. Sensitivity analyses are performed analytically at low computational costs. Numerical examples demonstrate the efficiency and fast convergence of the method. Compared to established algorithms, the number of required function evaluations is reduced significantly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abdalla MM, Setoodeh S, Gürdal Z (2007) Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters. Compos Struct 81(2):283–291CrossRef Abdalla MM, Setoodeh S, Gürdal Z (2007) Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters. Compos Struct 81(2):283–291CrossRef
Zurück zum Zitat Duvaut G, Terrel G, Léné F, Verijenko V (2000) Optimization of fiber reinforced composites. Compos Struct 48(1):83–89CrossRef Duvaut G, Terrel G, Léné F, Verijenko V (2000) Optimization of fiber reinforced composites. Compos Struct 48(1):83–89CrossRef
Zurück zum Zitat Fischer B, Horn B, Bartelt C, Blößl Y (2015) Method for an automated optimization of fiber patch placement layup designs. Int J Compos Math 5(2):37–46 Fischer B, Horn B, Bartelt C, Blößl Y (2015) Method for an automated optimization of fiber patch placement layup designs. Int J Compos Math 5(2):37–46
Zurück zum Zitat Fukunaga H, Sekine H (1993) Optimum design of composite structures for shape, layer angle and layer thickness distributions. J Compos Mater 27(15):1479–1492CrossRef Fukunaga H, Sekine H (1993) Optimum design of composite structures for shape, layer angle and layer thickness distributions. J Compos Mater 27(15):1479–1492CrossRef
Zurück zum Zitat Fukunaga H, Vanderplaats G (1991) Strength optimization of laminated composites with respect to layer thickness and/or layer orientation angle. Comput Struct 40(6):1429–1439CrossRef Fukunaga H, Vanderplaats G (1991) Strength optimization of laminated composites with respect to layer thickness and/or layer orientation angle. Comput Struct 40(6):1429–1439CrossRef
Zurück zum Zitat Gallier J (2010) The schur complement and symmetric positive semidefinite (and definite) matrices. December 44:1–12 Gallier J (2010) The schur complement and symmetric positive semidefinite (and definite) matrices. December 44:1–12
Zurück zum Zitat Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L (2010) Optimum stacking sequence design of composite materials part ii: Variable stiffness design. Compos Struct 93(1):1–13CrossRef Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L (2010) Optimum stacking sequence design of composite materials part ii: Variable stiffness design. Compos Struct 93(1):1–13CrossRef
Zurück zum Zitat Grandhi R, Bharatram G, Venkayya V (1992) Optimum design of plate structures with multiple frequency constraints. Structural optimization 5(1-2):100–107CrossRef Grandhi R, Bharatram G, Venkayya V (1992) Optimum design of plate structures with multiple frequency constraints. Structural optimization 5(1-2):100–107CrossRef
Zurück zum Zitat Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47(2):329–334CrossRef Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47(2):329–334CrossRef
Zurück zum Zitat Henrichsen SR, Lindgaard E, Lund E (2015) Free material stiffness design of laminated composite structures using commercial finite element analysis codes. Struct Multidiscip Optim 51(5):1097–1111MathSciNetCrossRef Henrichsen SR, Lindgaard E, Lund E (2015) Free material stiffness design of laminated composite structures using commercial finite element analysis codes. Struct Multidiscip Optim 51(5):1097–1111MathSciNetCrossRef
Zurück zum Zitat Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. In: Proceedings of the royal society of london a: mathematical, Physical and Engineering Sciences, The Royal Society, vol 193, pp 281-297 Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. In: Proceedings of the royal society of london a: mathematical, Physical and Engineering Sciences, The Royal Society, vol 193, pp 281-297
Zurück zum Zitat Hoffman O (1967) The brittle strength of orthotropic materials. J Compos Mater 1(2):200–206CrossRef Hoffman O (1967) The brittle strength of orthotropic materials. J Compos Mater 1(2):200–206CrossRef
Zurück zum Zitat Hyer M, Charette R (1991) Use of curvilinear fiber format in composite structure design. AIAA J 29 (6):1011–1015CrossRef Hyer M, Charette R (1991) Use of curvilinear fiber format in composite structure design. AIAA J 29 (6):1011–1015CrossRef
Zurück zum Zitat Khan M, Willmert K (1981) An efficient optimality criterion method for natural frequency constrained structures. Comput Struct 14(5):501–507CrossRefMATH Khan M, Willmert K (1981) An efficient optimality criterion method for natural frequency constrained structures. Comput Struct 14(5):501–507CrossRefMATH
Zurück zum Zitat Khosravi P, Sedaghati R (2008) Design of laminated composite structures for optimum fiber direction and layer thickness, using optimality criteria. Struct Multidiscip Optim 36(2):159–167CrossRef Khosravi P, Sedaghati R (2008) Design of laminated composite structures for optimum fiber direction and layer thickness, using optimality criteria. Struct Multidiscip Optim 36(2):159–167CrossRef
Zurück zum Zitat Khot N (1981) Algorithms based on optimality criteria to design minimum weight structures. Eng Optim 5 (2):73–90CrossRef Khot N (1981) Algorithms based on optimality criteria to design minimum weight structures. Eng Optim 5 (2):73–90CrossRef
Zurück zum Zitat Khot N, Venkayya V, Johnson C, Tischler V (1973) Optimization of fiber reinforced composite structures. Int J Solids Struct 9(10):1225–1236CrossRef Khot N, Venkayya V, Johnson C, Tischler V (1973) Optimization of fiber reinforced composite structures. Int J Solids Struct 9(10):1225–1236CrossRef
Zurück zum Zitat Kiusalaas J, Shaw RC (1978) An algorithm for optimal structural design with frequency constraints. Int J Numer Methods Eng 13(2):283–295CrossRefMATH Kiusalaas J, Shaw RC (1978) An algorithm for optimal structural design with frequency constraints. Int J Numer Methods Eng 13(2):283–295CrossRefMATH
Zurück zum Zitat Kriechbaum R, Schäfer J, Mattheck C (1992) CAIO (Computer Aided Internal Optimization) - A powerful method to optimize fiber arrangement in composite materials. In: European conference on smart structures and materials, 1 st, Glasgow, pp 281– 284 Kriechbaum R, Schäfer J, Mattheck C (1992) CAIO (Computer Aided Internal Optimization) - A powerful method to optimize fiber arrangement in composite materials. In: European conference on smart structures and materials, 1 st, Glasgow, pp 281– 284
Zurück zum Zitat Lipton R, Stuebner M (2007) Optimal design of composite structures for strength and stiffness: an inverse homogenization approach. Struct Multidiscip Optim 33(4-5):351–362MathSciNetCrossRefMATH Lipton R, Stuebner M (2007) Optimal design of composite structures for strength and stiffness: an inverse homogenization approach. Struct Multidiscip Optim 33(4-5):351–362MathSciNetCrossRefMATH
Zurück zum Zitat Masur EF (1970) Optimum stiffness and strength of elastic structures. J Eng Mech Div 96(5):621–640 Masur EF (1970) Optimum stiffness and strength of elastic structures. J Eng Mech Div 96(5):621–640
Zurück zum Zitat Parnas L, Oral S, Ceyhan Ü (2003) Optimum design of composite structures with curved fiber courses. Compos Sci Technol 63(7):1071–1082CrossRef Parnas L, Oral S, Ceyhan Ü (2003) Optimum design of composite structures with curved fiber courses. Compos Sci Technol 63(7):1071–1082CrossRef
Zurück zum Zitat Pedersen NL (2006) On design of fiber-nets and orientation for eigenfrequency optimization of plates. Comput Mech 39(1):1–13MathSciNetCrossRefMATH Pedersen NL (2006) On design of fiber-nets and orientation for eigenfrequency optimization of plates. Comput Mech 39(1):1–13MathSciNetCrossRefMATH
Zurück zum Zitat Pedersen P (1989) On optimal orientation of orthotropic materials. Structural Optimization 1(2):101–106CrossRef Pedersen P (1989) On optimal orientation of orthotropic materials. Structural Optimization 1(2):101–106CrossRef
Zurück zum Zitat Pedersen P (1990) Bounds on elastic energy in solids of orthotropic materials. Structural Optimization 2 (1):55–63CrossRef Pedersen P (1990) Bounds on elastic energy in solids of orthotropic materials. Structural Optimization 2 (1):55–63CrossRef
Zurück zum Zitat Pedersen P (1991) On thickness and orientational design with orthotropic materials. Structural Optimization 3(2):69–78CrossRef Pedersen P (1991) On thickness and orientational design with orthotropic materials. Structural Optimization 3(2):69–78CrossRef
Zurück zum Zitat Peeters D, van Baalen D, Abdallah M (2015) Combining topology and lamination parameter optimisation. Struct Multidiscip Optim 52(1):105–120MathSciNetCrossRef Peeters D, van Baalen D, Abdallah M (2015) Combining topology and lamination parameter optimisation. Struct Multidiscip Optim 52(1):105–120MathSciNetCrossRef
Zurück zum Zitat Puck A, Schürmann H (1998) Failure analysis of frp laminates by means of physically based phenomenological models. Compos Sci Technol 58(7):1045–1067CrossRef Puck A, Schürmann H (1998) Failure analysis of frp laminates by means of physically based phenomenological models. Compos Sci Technol 58(7):1045–1067CrossRef
Zurück zum Zitat Rettenwander T, Fischlschweiger M, Steinbichler G (2014) Computational structural tailoring of continuous fibre reinforced polymer matrix composites by hybridisation of principal stress and thickness optimisation. Compos Struct 108:711–719CrossRef Rettenwander T, Fischlschweiger M, Steinbichler G (2014) Computational structural tailoring of continuous fibre reinforced polymer matrix composites by hybridisation of principal stress and thickness optimisation. Compos Struct 108:711–719CrossRef
Zurück zum Zitat Schläpfer B, Kress G (2012) A sensitivity-based parameterization concept for the automated design and placement of reinforcement doublers. Compos Struct 94(3):896–903CrossRef Schläpfer B, Kress G (2012) A sensitivity-based parameterization concept for the automated design and placement of reinforcement doublers. Compos Struct 94(3):896–903CrossRef
Zurück zum Zitat Schläpfer B, Kress G (2014) Optimal design and testing of laminated light-weight composite structures with local reinforcements considering strength constraints part i: Design. Compos A: Appl Sci Manuf 61:268–278CrossRef Schläpfer B, Kress G (2014) Optimal design and testing of laminated light-weight composite structures with local reinforcements considering strength constraints part i: Design. Compos A: Appl Sci Manuf 61:268–278CrossRef
Zurück zum Zitat Setoodeh S, Abdalla M, Gürdal Z (2005) Combined topology and fiber path design of composite layers using cellular automata. Struct Multidiscip Optim 30(6):413–421CrossRef Setoodeh S, Abdalla M, Gürdal Z (2005) Combined topology and fiber path design of composite layers using cellular automata. Struct Multidiscip Optim 30(6):413–421CrossRef
Zurück zum Zitat Stanković T, Mueller J, Egan P, Shea K (2015) A generalized optimality criteria method for optimization of additively manufactured multimaterial lattice structures. J Mech Des 137(11):111, 405CrossRef Stanković T, Mueller J, Egan P, Shea K (2015) A generalized optimality criteria method for optimization of additively manufactured multimaterial lattice structures. J Mech Des 137(11):111, 405CrossRef
Zurück zum Zitat Szyszkowski W (1991) Multimodal optimality criterion for maximum fundamental frequency of free vibrations. Comput Struct 41(5):909–916CrossRefMATH Szyszkowski W (1991) Multimodal optimality criterion for maximum fundamental frequency of free vibrations. Comput Struct 41(5):909–916CrossRefMATH
Zurück zum Zitat Thomsen J (1991) Optimization of composite discs. Structural optimization 3(2):89–98CrossRef Thomsen J (1991) Optimization of composite discs. Structural optimization 3(2):89–98CrossRef
Zurück zum Zitat Tsai S (1968) Fundamental aspects of fiber reinforced plastic composites. University Michigen Press, Ann Arbor Tsai S (1968) Fundamental aspects of fiber reinforced plastic composites. University Michigen Press, Ann Arbor
Zurück zum Zitat Venkayya V (1993) Generalized optimality criteria method. Prog Astronaut Aeronaut 150:151–151 Venkayya V (1993) Generalized optimality criteria method. Prog Astronaut Aeronaut 150:151–151
Zurück zum Zitat Zacharopoulos A, Willmert K, Khan M (1984) An optimality criterion method for structures with stress, displacement and frequency constraints. Comput Struct 19(4):621–629CrossRef Zacharopoulos A, Willmert K, Khan M (1984) An optimality criterion method for structures with stress, displacement and frequency constraints. Comput Struct 19(4):621–629CrossRef
Metadaten
Titel
An optimality criteria-based algorithm for efficient design optimization of laminated composites using concurrent resizing and scaling
verfasst von
Ralph Kussmaul
Markus Zogg
Paolo Ermanni
Publikationsdatum
07.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 2/2018
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-1927-1

Weitere Artikel der Ausgabe 2/2018

Structural and Multidisciplinary Optimization 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.