Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Wireless Personal Communications 3/2021

19.11.2020

An Optimized Routing Algorithm for Enhancing Scalability of Wireless Sensor Network

verfasst von: Neha Barthwal, Shashi Kant Verma

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Wireless sensor network has fascinated numerous researchers over the last few decades because of its sensing technology. Evolving trend in the development of WSNs is—“One deployment, multiple applications”. Multiple sensor nodes are deployed over a large geographical area in WSN and the communication takes place through a wireless media. It is supposed that sensor nodes can interact with the Base Station through one-hop routing. But existing routing protocol becomes inept when the network size rises because of large distance between sink and sensor nodes. A routing protocol is considered reliable if it work efficiently when the size of network grows or there is increase in workload. That’s why achieving scalability became one of the prominent research goal in wireless sensor network. An optimized routing algorithm has been proposed in this paper for enhancing scalability of WSN. For collecting and aggregating data efficiently from cluster heads, a mobile agent has been deployed. Sink collects data from its nearby cluster heads and rest of the data is gathered by the mobile agent by moving along a trajectory. Hot-Spot problem is also resolved by mobile agent. Mobile agent diminishes energy expenditure incurred by the CHs away from base station. It adds 54.43%, 24.38%, 20.88% reclamation in stability period in comparison to ISMAP, GA-MIP and EHLDC, it further adds 63.40%, 42.85%, 31.50% recuperation in throughput in comparison to ISMAP, GA-MIP and EHLDC and 66.97%, 45.89%, 26.50% reclamation in network lifetime in comparison to ISMAP, GA-MIP and EHLDC.
Literatur
1.
Zurück zum Zitat Hailing, C. L. J., Yong, M., Tianpu, L., Wei, L., & Ze, Z. (2005). Overview of wireless sensor networks. Journal of Computer Research and Development, 1, 021. Hailing, C. L. J., Yong, M., Tianpu, L., Wei, L., & Ze, Z. (2005). Overview of wireless sensor networks. Journal of Computer Research and Development, 1, 021.
2.
Zurück zum Zitat Matin, M. A., & Islam, M. M. (2012). Overview of wireless sensor network. In Wireless sensor networks- technology and protocols (pp. 1–3). Matin, M. A., & Islam, M. M. (2012). Overview of wireless sensor network. In Wireless sensor networks- technology and protocols (pp. 1–3).
3.
Zurück zum Zitat Buratti, C., Conti, A., Dardari, D., & Verdone, R. (2009). An overview on wireless sensor networks technology and evolution. Sensors, 9(9), 6869–6896. CrossRef Buratti, C., Conti, A., Dardari, D., & Verdone, R. (2009). An overview on wireless sensor networks technology and evolution. Sensors, 9(9), 6869–6896. CrossRef
4.
Zurück zum Zitat Bhattacharyya, D., Kim, T. H., & Pal, S. (2010). A comparative study of wireless sensor networks and their routing protocols. Sensors, 10(12), 10506–10523. CrossRef Bhattacharyya, D., Kim, T. H., & Pal, S. (2010). A comparative study of wireless sensor networks and their routing protocols. Sensors, 10(12), 10506–10523. CrossRef
5.
Zurück zum Zitat Shanthi, S., Nayak, P., & Dandu, S. (2019). Minimization of energy consumption in wireless sensor networks by using a special mobile agent. In Soft computing and signal processing (pp. 359–368). Singapore: Springer. Shanthi, S., Nayak, P., & Dandu, S. (2019). Minimization of energy consumption in wireless sensor networks by using a special mobile agent. In Soft computing and signal processing (pp. 359–368). Singapore: Springer.
6.
Zurück zum Zitat Carlos-Mancilla, M., López-Mellado, E., & Siller, M. (2016). Wireless sensor networks formation: Approaches and techniques. Journal of Sensors, 2016, 1–18. CrossRef Carlos-Mancilla, M., López-Mellado, E., & Siller, M. (2016). Wireless sensor networks formation: Approaches and techniques. Journal of Sensors, 2016, 1–18. CrossRef
8.
Zurück zum Zitat Noufal, K. P. (2015). Wireless sensor networks–scalability and performance issues: A review. IJCST, 6(1), 139–140. Noufal, K. P. (2015). Wireless sensor networks–scalability and performance issues: A review. IJCST, 6(1), 139–140.
9.
Zurück zum Zitat Mamun, Q. (2012). A qualitative comparison of different logical topologies for wireless sensor networks. Sensors, 12(11), 14887–14913. CrossRef Mamun, Q. (2012). A qualitative comparison of different logical topologies for wireless sensor networks. Sensors, 12(11), 14887–14913. CrossRef
10.
Zurück zum Zitat Dhage, M. S. V., Thakre, A. N., & Mohod, S. W. (2014). A review on scalability issue in wireless sensor networks. International Journal of Innovative Research in Advanced Engineering (IJIRAE), 1, 463–466. Dhage, M. S. V., Thakre, A. N., & Mohod, S. W. (2014). A review on scalability issue in wireless sensor networks. International Journal of Innovative Research in Advanced Engineering (IJIRAE), 1, 463–466.
12.
Zurück zum Zitat Cheng, L., Das, S. K., Di Francesco, M., Chen, C., & Ma, J. (2011). Scalable and energy-efficient broadcasting in multi-hop cluster-based wireless sensor networks. In 2011 IEEE international conference on communications (ICC) (pp. 1–5). IEEE. Cheng, L., Das, S. K., Di Francesco, M., Chen, C., & Ma, J. (2011). Scalable and energy-efficient broadcasting in multi-hop cluster-based wireless sensor networks. In 2011 IEEE international conference on communications (ICC) (pp. 1–5). IEEE.
13.
Zurück zum Zitat Lourthu Hepziba, M. M., Balamurugan, K., & Vijayaraj, M. (2013). Maximization of lifetime and reducing power consumption in wireless sensor network using protocol. International Journal of Soft Computing and Engineering, 2(6), 90–95. Lourthu Hepziba, M. M., Balamurugan, K., & Vijayaraj, M. (2013). Maximization of lifetime and reducing power consumption in wireless sensor network using protocol. International Journal of Soft Computing and Engineering, 2(6), 90–95.
14.
Zurück zum Zitat Jan, B., Farman, H., Javed, H., Montrucchio, B., Khan, M., & Ali, S. (2017). Energy efficient hierarchical clustering approaches in wireless sensor networks: A survey. Wireless Communications and Mobile Computing, 2017, 1–14. CrossRef Jan, B., Farman, H., Javed, H., Montrucchio, B., Khan, M., & Ali, S. (2017). Energy efficient hierarchical clustering approaches in wireless sensor networks: A survey. Wireless Communications and Mobile Computing, 2017, 1–14. CrossRef
15.
Zurück zum Zitat Wu, C., Wu, W., Wan, C., Bekkering, E., & Xiong, N. (2017). Design and analysis of a data fusion scheme in mobile wireless sensor networks based on multi-protocol mobile agents. Sensors, 17(11), 2523. CrossRef Wu, C., Wu, W., Wan, C., Bekkering, E., & Xiong, N. (2017). Design and analysis of a data fusion scheme in mobile wireless sensor networks based on multi-protocol mobile agents. Sensors, 17(11), 2523. CrossRef
16.
Zurück zum Zitat Gavalas, D., Venetis, I. E., Konstantopoulos, C., & Pantziou, G. (2017). Mobile agent itinerary planning for WSN data fusion: Considering multiple sinks and heterogeneous networks. International Journal of Communication Systems, 30(8), e3184. CrossRef Gavalas, D., Venetis, I. E., Konstantopoulos, C., & Pantziou, G. (2017). Mobile agent itinerary planning for WSN data fusion: Considering multiple sinks and heterogeneous networks. International Journal of Communication Systems, 30(8), e3184. CrossRef
17.
Zurück zum Zitat Deep, K., and Niranjan, S. (2019). Mobile agent embedding in cluster based wireless sensor network environment. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(7S2). ISSN: 2278-3075. Deep, K., and Niranjan, S. (2019). Mobile agent embedding in cluster based wireless sensor network environment. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(7S2). ISSN: 2278-3075.
18.
Zurück zum Zitat Ha, I., Djuraev, M., & Ahn, B. (2017). An optimal data gathering method for mobile sinks in wsns. Wireless Personal Communications, 97(1), 1401–1417. CrossRef Ha, I., Djuraev, M., & Ahn, B. (2017). An optimal data gathering method for mobile sinks in wsns. Wireless Personal Communications, 97(1), 1401–1417. CrossRef
19.
Zurück zum Zitat Qi, H., & Wang, F. (2001). Optimal itinerary analysis for mobile agents in ad hoc wireless sensor networks. Proceedings of the IEEE, 18(5), 147–153. Qi, H., & Wang, F. (2001). Optimal itinerary analysis for mobile agents in ad hoc wireless sensor networks. Proceedings of the IEEE, 18(5), 147–153.
20.
Zurück zum Zitat Wu, Q., Rao, N. S., Barhen, J., Iyengar, S. S., Vaishnavi, V. K., Qi, H., et al. (2004). On computing mobile agent routes for data fusion in distributed sensor networks. IEEE Transactions on Knowledge and Data Engineering, 6, 740–753. CrossRef Wu, Q., Rao, N. S., Barhen, J., Iyengar, S. S., Vaishnavi, V. K., Qi, H., et al. (2004). On computing mobile agent routes for data fusion in distributed sensor networks. IEEE Transactions on Knowledge and Data Engineering, 6, 740–753. CrossRef
21.
Zurück zum Zitat Chen, M., Cai, W., Gonzalez, S., & Leung, V. C. (2010). Balanced itinerary planning for multiple mobile agents in wireless sensor networks. In International conference on ad hoc networks (pp. 416–418). Berlin, Heidelberg: Springer. Chen, M., Cai, W., Gonzalez, S., & Leung, V. C. (2010). Balanced itinerary planning for multiple mobile agents in wireless sensor networks. In International conference on ad hoc networks (pp. 416–418). Berlin, Heidelberg: Springer.
22.
Zurück zum Zitat Xu, Y., & Qi, H. (2006). Dynamic mobile agent migration in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 2(1/2), 73–82. CrossRef Xu, Y., & Qi, H. (2006). Dynamic mobile agent migration in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 2(1/2), 73–82. CrossRef
23.
Zurück zum Zitat Xu, Y., & Qi, H. (2008). Mobile agent migration modeling and design for target tracking in wireless sensor networks. Ad Hoc Networks, 6(1), 1–16. CrossRef Xu, Y., & Qi, H. (2008). Mobile agent migration modeling and design for target tracking in wireless sensor networks. Ad Hoc Networks, 6(1), 1–16. CrossRef
24.
Zurück zum Zitat Shakshuki, E., Malik, H., & Denko, M. K. (2008). Software agent-based directed diffusion in wireless sensor network. Telecommunication Systems, 38(3–4), 161–174. CrossRef Shakshuki, E., Malik, H., & Denko, M. K. (2008). Software agent-based directed diffusion in wireless sensor network. Telecommunication Systems, 38(3–4), 161–174. CrossRef
25.
Zurück zum Zitat Konstantopoulos, C., Mpitziopoulos, A., Gavalas, D., & Pantziou, D. (2009). Effective determination of mobile agent itineraries for data aggregation on sensor networks. IEEE Transactions on Knowledge and Data Engineering, 22(12), 1679–1693. CrossRef Konstantopoulos, C., Mpitziopoulos, A., Gavalas, D., & Pantziou, D. (2009). Effective determination of mobile agent itineraries for data aggregation on sensor networks. IEEE Transactions on Knowledge and Data Engineering, 22(12), 1679–1693. CrossRef
26.
Zurück zum Zitat Gavalas, D., Mpitziopoulos, A., Pantziou, G., & Konstantopoulos, C. (2010). An approach for near-optimal distributed data fusion in wireless sensor networks. Wireless Networks, 16(5), 1407–1425. CrossRef Gavalas, D., Mpitziopoulos, A., Pantziou, G., & Konstantopoulos, C. (2010). An approach for near-optimal distributed data fusion in wireless sensor networks. Wireless Networks, 16(5), 1407–1425. CrossRef
27.
Zurück zum Zitat Mpitziopoulos, A., Gavalas, D., Konstantopoulos, C., & Pantziou, G. (2010). CBID: A scalable method for distributed data aggregation in WSNs. International Journal of Distributed Sensor Networks, 6(1), 1–13. CrossRef Mpitziopoulos, A., Gavalas, D., Konstantopoulos, C., & Pantziou, G. (2010). CBID: A scalable method for distributed data aggregation in WSNs. International Journal of Distributed Sensor Networks, 6(1), 1–13. CrossRef
28.
Zurück zum Zitat Chen, M., Yang, L. T., Kwon, T., Zhou, L., & Jo, M. (2011). Itinerary planning for energy-efficient agent communications in wireless sensor networks. IEEE Transactions on Vehicular Technology, 60(7), 3290–3299. CrossRef Chen, M., Yang, L. T., Kwon, T., Zhou, L., & Jo, M. (2011). Itinerary planning for energy-efficient agent communications in wireless sensor networks. IEEE Transactions on Vehicular Technology, 60(7), 3290–3299. CrossRef
29.
Zurück zum Zitat Cai, W., Chen, M., Hara, T., Shu, L., & Kwon, T. (2011). A genetic algorithm approach to multi-agent itinerary planning in wireless sensor network’s. Mobile Networks and Applications, 16(6), 782–793. CrossRef Cai, W., Chen, M., Hara, T., Shu, L., & Kwon, T. (2011). A genetic algorithm approach to multi-agent itinerary planning in wireless sensor network’s. Mobile Networks and Applications, 16(6), 782–793. CrossRef
30.
Zurück zum Zitat Aloui, I., Kazar, O., Kahloul, L., & Servigne, S. (2015). A new itinerary planning approach among multiple mobile agents in wireless sensor networks (WSN) to reduce energy consumption. International Journal of Communication Networks and Information Security, 7(2), 116–122. Aloui, I., Kazar, O., Kahloul, L., & Servigne, S. (2015). A new itinerary planning approach among multiple mobile agents in wireless sensor networks (WSN) to reduce energy consumption. International Journal of Communication Networks and Information Security, 7(2), 116–122.
31.
Zurück zum Zitat Vijayalakshmi, A., & Bhuvaneswari, V. (2016). Mobile agent based optimal data gathering in wireless sensor networks. In 10th IEEE international conference on intelligent systems and control (ISCO) (pp. 1–4). Vijayalakshmi, A., & Bhuvaneswari, V. (2016). Mobile agent based optimal data gathering in wireless sensor networks. In 10th IEEE international conference on intelligent systems and control (ISCO) (pp. 1–4).
32.
Zurück zum Zitat Lohani, D., & Varma, S. (2016). Energy efficient data aggregation in mobile agent based wireless sensor network. Wireless Personal Communications, 89(4), 1165–1176. CrossRef Lohani, D., & Varma, S. (2016). Energy efficient data aggregation in mobile agent based wireless sensor network. Wireless Personal Communications, 89(4), 1165–1176. CrossRef
33.
Zurück zum Zitat Qadori, H. Q., Zukarnain, Z. A., Hanapi, Z. M., & Subramaniam, S. (2018). FuMAM: Fuzzy- based mobile agent migration approach for data gathering in wireless sensor networks. IEEE Access, 6, 15643–15652. CrossRef Qadori, H. Q., Zukarnain, Z. A., Hanapi, Z. M., & Subramaniam, S. (2018). FuMAM: Fuzzy- based mobile agent migration approach for data gathering in wireless sensor networks. IEEE Access, 6, 15643–15652. CrossRef
34.
Zurück zum Zitat El Fissaoui, M., Beni-Hssane, A., & Saadi, M. (2018). Multi-mobile agent itinerary planning-based energy and fault aware data aggregation in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2018(1), 1–11. CrossRef El Fissaoui, M., Beni-Hssane, A., & Saadi, M. (2018). Multi-mobile agent itinerary planning-based energy and fault aware data aggregation in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2018(1), 1–11. CrossRef
35.
Zurück zum Zitat Verma, S., Sood, N., & Sharma, A. K. (2019). A novelistic approach for energy efficient routing using single and multiple data sinks in heterogeneous wireless sensor network. Peer-to-Peer Networking and Applications, 12(5), 1110–1136. CrossRef Verma, S., Sood, N., & Sharma, A. K. (2019). A novelistic approach for energy efficient routing using single and multiple data sinks in heterogeneous wireless sensor network. Peer-to-Peer Networking and Applications, 12(5), 1110–1136. CrossRef
36.
Zurück zum Zitat Verma, S., Sood, N., & Sharma, A. K. (2019). Genetic algorithm-based optimized cluster head selection for single and multiple data sinks in heterogeneous wireless sensor network. Applied Soft Computing, 85, 105788. CrossRef Verma, S., Sood, N., & Sharma, A. K. (2019). Genetic algorithm-based optimized cluster head selection for single and multiple data sinks in heterogeneous wireless sensor network. Applied Soft Computing, 85, 105788. CrossRef
Metadaten
Titel
An Optimized Routing Algorithm for Enhancing Scalability of Wireless Sensor Network
verfasst von
Neha Barthwal
Shashi Kant Verma
Publikationsdatum
19.11.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07978-9

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe