Skip to main content
Erschienen in: Natural Computing 4/2019

20.09.2019

An overview of quantum cellular automata

verfasst von: P. Arrighi

Erschienen in: Natural Computing | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum cellular automata are arrays of identical finite-dimensional quantum systems, evolving in discrete-time steps by iterating a unitary operator G. Moreover the global evolution G is required to be causal (it propagates information at a bounded speed) and translation-invariant (it acts everywhere the same). Quantum cellular automata provide a model/architecture for distributed quantum computation. More generally, they encompass most of discrete-space discrete-time quantum theory. We give an overview of their theory, with particular focus on structure results; computability and universality results; and quantum simulation results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahlbrecht A, Scholz VB, Werner AH (2011) Disordered quantum walks in one lattice dimension. J Math Phys 52(10):102201MathSciNetMATH Ahlbrecht A, Scholz VB, Werner AH (2011) Disordered quantum walks in one lattice dimension. J Math Phys 52(10):102201MathSciNetMATH
Zurück zum Zitat Ahlbrecht A, Alberti A, Meschede D, Scholz VB, Werner AH, Werner RF (2012) Molecular binding in interacting quantum walks. New J Phys 14(7):073050 Ahlbrecht A, Alberti A, Meschede D, Scholz VB, Werner AH, Werner RF (2012) Molecular binding in interacting quantum walks. New J Phys 14(7):073050
Zurück zum Zitat Ambainis A, Childs AM, Reichardt BW, Špalek R, Zhang S (2010) Any and-or formula of size n can be evaluated in time n\(^{\wedge }\)1/2+o(1) on a quantum computer. SIAM J Comput 39(6):2513–2530MathSciNetMATH Ambainis A, Childs AM, Reichardt BW, Špalek R, Zhang S (2010) Any and-or formula of size n can be evaluated in time n\(^{\wedge }\)1/2+o(1) on a quantum computer. SIAM J Comput 39(6):2513–2530MathSciNetMATH
Zurück zum Zitat Andreu A, Pablo A, Pablo A, Di Molfetta G, Iván M, Dirac PM (2019) Lindblad and telegraph equations. Manuscript, Open quantum walks Andreu A, Pablo A, Pablo A, Di Molfetta G, Iván M, Dirac PM (2019) Lindblad and telegraph equations. Manuscript, Open quantum walks
Zurück zum Zitat Arnault P, Di Molfetta G, Brachet M, Debbasch F (2016) Quantum walks and non-Abelian discrete gauge theory. Phys Rev A 94(1):012335MathSciNet Arnault P, Di Molfetta G, Brachet M, Debbasch F (2016) Quantum walks and non-Abelian discrete gauge theory. Phys Rev A 94(1):012335MathSciNet
Zurück zum Zitat Arnault P, Pérez A, Arrighi P, Farrelly T (2019) Discrete-time quantum walks as fermions of lattice Gauge theory. Phys Rev A 99:032110 Arnault P, Pérez A, Arrighi P, Farrelly T (2019) Discrete-time quantum walks as fermions of lattice Gauge theory. Phys Rev A 99:032110
Zurück zum Zitat Arrighi P, Fargetton R (2007) Intrinsically universal one-dimensional quantum cellular automata. In: Proceedings of DCM Arrighi P, Fargetton R (2007) Intrinsically universal one-dimensional quantum cellular automata. In: Proceedings of DCM
Zurück zum Zitat Arrighi P, Grattage J (2010) A simple \(n\)-dimensional intrinsically universal quantum cellular automaton. Lang Autom Theory Appl 6031:70–81MathSciNetMATH Arrighi P, Grattage J (2010) A simple \(n\)-dimensional intrinsically universal quantum cellular automaton. Lang Autom Theory Appl 6031:70–81MathSciNetMATH
Zurück zum Zitat Arrighi P, Dowek G (2010) On the completeness of quantum computation models. In: Programs, Proofs, Processes: 6th Conference on Computability in Europe, CIE, 2010, Ponta Delgada, Azores, Portugal, June 30–July 4, 2010, Proceedings, vol 6158, pp 21–30 Arrighi P, Dowek G (2010) On the completeness of quantum computation models. In: Programs, Proofs, Processes: 6th Conference on Computability in Europe, CIE, 2010, Ponta Delgada, Azores, Portugal, June 30–July 4, 2010, Proceedings, vol 6158, pp 21–30
Zurück zum Zitat Arrighi P, Dowek G (2012) The physical Church–Turing thesis and the principles of quantum theory. Int J Found Comput Sci 23:1131–1145MathSciNetMATH Arrighi P, Dowek G (2012) The physical Church–Turing thesis and the principles of quantum theory. Int J Found Comput Sci 23:1131–1145MathSciNetMATH
Zurück zum Zitat Arrighi P, Grattage J (2010) A quantum game of life. In: Second symposium on cellular automata “Journées Automates Cellulaires” (JAC 2010), Turku, 2010. TUCS Lecture Notes, vol 13, pp 31–42 Arrighi P, Grattage J (2010) A quantum game of life. In: Second symposium on cellular automata “Journées Automates Cellulaires” (JAC 2010), Turku, 2010. TUCS Lecture Notes, vol 13, pp 31–42
Zurück zum Zitat Arrighi P, Nesme V (2010) The block neighborhood. In: TUCS (ed) Proceedings of JAC 2010, Turku, Finlande, pp 43–53 Arrighi P, Nesme V (2010) The block neighborhood. In: TUCS (ed) Proceedings of JAC 2010, Turku, Finlande, pp 43–53
Zurück zum Zitat Arrighi P, Nesme V (2011) A simple block representation of reversible cellular automata with time-symmetry. In: 17th international workshop on cellular automata and discrete complex systems, (AUTOMATA 2011), Santiago de Chile Arrighi P, Nesme V (2011) A simple block representation of reversible cellular automata with time-symmetry. In: 17th international workshop on cellular automata and discrete complex systems, (AUTOMATA 2011), Santiago de Chile
Zurück zum Zitat Arrighi P, Grattage J (2012a) Intrinsically universal \(n\)-dimensional quantum cellular automata. J Comput Syst Sci 78:1883–1898MathSciNetMATH Arrighi P, Grattage J (2012a) Intrinsically universal \(n\)-dimensional quantum cellular automata. J Comput Syst Sci 78:1883–1898MathSciNetMATH
Zurück zum Zitat Arrighi P, Grattage J (2012b) Partitioned quantum cellular automata are intrinsically universal. Nat Comput 11:13–22MathSciNetMATH Arrighi P, Grattage J (2012b) Partitioned quantum cellular automata are intrinsically universal. Nat Comput 11:13–22MathSciNetMATH
Zurück zum Zitat Arrighi P, Facchini S (2013) Decoupled quantum walks, models of the klein-gordon and wave equations. EPL (Europhys Lett) 104(6):60004 Arrighi P, Facchini S (2013) Decoupled quantum walks, models of the klein-gordon and wave equations. EPL (Europhys Lett) 104(6):60004
Zurück zum Zitat Arrighi P, Nesme V, Werner RF (2008) Quantum cellular automata over finite, unbounded configurations. In: Proceedings of LATA, Lecture Notes in Computer Science, vol 5196. Springer, Berlin, pp 64–75 Arrighi P, Nesme V, Werner RF (2008) Quantum cellular automata over finite, unbounded configurations. In: Proceedings of LATA, Lecture Notes in Computer Science, vol 5196. Springer, Berlin, pp 64–75
Zurück zum Zitat Arrighi P, Fargetton R, Wang Z (2009) Intrinsically universal one-dimensional quantum cellular automata in two flavours. Fundam Inform 21:1001–1035MathSciNetMATH Arrighi P, Fargetton R, Wang Z (2009) Intrinsically universal one-dimensional quantum cellular automata in two flavours. Fundam Inform 21:1001–1035MathSciNetMATH
Zurück zum Zitat Arrighi P, Nesme V, Werner R (2010) Unitarity plus causality implies localizability. J Comput Syst Sci 77:372–378MathSciNetMATH Arrighi P, Nesme V, Werner R (2010) Unitarity plus causality implies localizability. J Comput Syst Sci 77:372–378MathSciNetMATH
Zurück zum Zitat Arrighi P, Nesme V, Werner R (2011a) Unitarity plus causality implies localizability (full version). J Comput Syst Sci 77(2):372–378MATH Arrighi P, Nesme V, Werner R (2011a) Unitarity plus causality implies localizability (full version). J Comput Syst Sci 77(2):372–378MATH
Zurück zum Zitat Arrighi P, Nesme V, Werner RF (2011b) One-dimensional quantum cellular automata. IJUC 7(4):223–244MATH Arrighi P, Nesme V, Werner RF (2011b) One-dimensional quantum cellular automata. IJUC 7(4):223–244MATH
Zurück zum Zitat Arrighi P, Fargetton R, Nesme V, Thierry E (2011c) Applying causality principles to the axiomatization of Probabilistic Cellular Automata. In: Proceedings of CiE 2011, Sofia, June 2011, LNCS, vol 6735, pp 1–10MATH Arrighi P, Fargetton R, Nesme V, Thierry E (2011c) Applying causality principles to the axiomatization of Probabilistic Cellular Automata. In: Proceedings of CiE 2011, Sofia, June 2011, LNCS, vol 6735, pp 1–10MATH
Zurück zum Zitat Arrighi P, Nesme V, Forets M (2014a) The dirac equation as a quantum walk: higher dimensions, observational convergence. J Phys A Math Theor 47(46):465302MathSciNetMATH Arrighi P, Nesme V, Forets M (2014a) The dirac equation as a quantum walk: higher dimensions, observational convergence. J Phys A Math Theor 47(46):465302MathSciNetMATH
Zurück zum Zitat Arrighi P, Stefano F, Marcelo F (2014b) Discrete lorentz covariance for quantum walks and quantum cellular automata. New J Phys 16(9):093007MathSciNet Arrighi P, Stefano F, Marcelo F (2014b) Discrete lorentz covariance for quantum walks and quantum cellular automata. New J Phys 16(9):093007MathSciNet
Zurück zum Zitat Arrighi P, Facchini S, Forets M (2016) Quantum walking in curved spacetime. Quantum Inf Process 15:3467–3486MathSciNetMATH Arrighi P, Facchini S, Forets M (2016) Quantum walking in curved spacetime. Quantum Inf Process 15:3467–3486MathSciNetMATH
Zurück zum Zitat Avalle M, Genoni MG, Serafini A (2015) Quantum state transfer through noisy quantum cellular automata. J Phys A Math Theor 48(19):195304MathSciNetMATH Avalle M, Genoni MG, Serafini A (2015) Quantum state transfer through noisy quantum cellular automata. J Phys A Math Theor 48(19):195304MathSciNetMATH
Zurück zum Zitat Benjamin SC (2000) Schemes for parallel quantum computation without local control of qubits. Phys Rev A 61(2):020301 Benjamin SC (2000) Schemes for parallel quantum computation without local control of qubits. Phys Rev A 61(2):020301
Zurück zum Zitat Bialynicki-Birula I (1994) Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys Rev D 49(12):6920–6927MathSciNet Bialynicki-Birula I (1994) Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys Rev D 49(12):6920–6927MathSciNet
Zurück zum Zitat Bibeau-Delisle A, Bisio A, D’Ariano GM, Perinotti P, Tosini A (2015) Doubly special relativity from quantum cellular automata. EPL (Europhys Lett) 109(5):50003 Bibeau-Delisle A, Bisio A, D’Ariano GM, Perinotti P, Tosini A (2015) Doubly special relativity from quantum cellular automata. EPL (Europhys Lett) 109(5):50003
Zurück zum Zitat Bisio A, D’Ariano GM, Tosini A (2012) Quantum field as a quantum cellular automaton i: the dirac free evolution in one dimension. ArXiv preprint arXiv:1212.2839 Bisio A, D’Ariano GM, Tosini A (2012) Quantum field as a quantum cellular automaton i: the dirac free evolution in one dimension. ArXiv preprint arXiv:​1212.​2839
Zurück zum Zitat Bisio A, D’Ariano GM, Perinotti P (2017) Quantum walks, Weyl equation and the Lorentz group. Found Phys 47(8):1065–1076MathSciNetMATH Bisio A, D’Ariano GM, Perinotti P (2017) Quantum walks, Weyl equation and the Lorentz group. Found Phys 47(8):1065–1076MathSciNetMATH
Zurück zum Zitat Bisio A, D’Ariano GM, Perinotti P, Tosini A (2018) Thirring quantum cellular automaton. Phys Rev A 97(3):032132 Bisio A, D’Ariano GM, Perinotti P, Tosini A (2018) Thirring quantum cellular automaton. Phys Rev A 97(3):032132
Zurück zum Zitat Bloch I (2005) Ultracold quantum gases in optical lattices. Nat Phys 1(1):23–30 Bloch I (2005) Ultracold quantum gases in optical lattices. Nat Phys 1(1):23–30
Zurück zum Zitat Boghosian BM, Taylor W (1998) Quantum lattice-gas model for the many-particle Schrödinger equation in d-dimensions. Phys Rev E 57(1):54–66MathSciNet Boghosian BM, Taylor W (1998) Quantum lattice-gas model for the many-particle Schrödinger equation in d-dimensions. Phys Rev E 57(1):54–66MathSciNet
Zurück zum Zitat Bose S (2007) Quantum communication through spin chain dynamics: an introductory overview. Contemp Phys 48(1):13–30 Bose S (2007) Quantum communication through spin chain dynamics: an introductory overview. Contemp Phys 48(1):13–30
Zurück zum Zitat Bratteli O, Robinson D (1987) Operators algebras and quantum statistical mechanics. Springer, New YorkMATH Bratteli O, Robinson D (1987) Operators algebras and quantum statistical mechanics. Springer, New YorkMATH
Zurück zum Zitat Brennen GK, Williams JE (2003) Entanglement dynamics in one-dimensional quantum cellular automata. Phys Rev A 68(4):042311MathSciNet Brennen GK, Williams JE (2003) Entanglement dynamics in one-dimensional quantum cellular automata. Phys Rev A 68(4):042311MathSciNet
Zurück zum Zitat Cedzich C, Rybár T, Werner AH, Alberti A, Genske M, Werner RF (2013) Propagation of quantum walks in electric fields. Phys Rev Lett 111(16):160601 Cedzich C, Rybár T, Werner AH, Alberti A, Genske M, Werner RF (2013) Propagation of quantum walks in electric fields. Phys Rev Lett 111(16):160601
Zurück zum Zitat Chandrashekar CM, Banerjee S, Srikanth R (2010) Relationship between quantum walks and relativistic quantum mechanics. Phys Rev A 81(6):62340 Chandrashekar CM, Banerjee S, Srikanth R (2010) Relationship between quantum walks and relativistic quantum mechanics. Phys Rev A 81(6):62340
Zurück zum Zitat Cirac JI, Perez-Garcia D, Schuch N, Verstraete F (2017) Matrix product unitaries: structure, symmetries, and topological invariants. J Stat Mech Theory Exp 8(2017):083105MathSciNet Cirac JI, Perez-Garcia D, Schuch N, Verstraete F (2017) Matrix product unitaries: structure, symmetries, and topological invariants. J Stat Mech Theory Exp 8(2017):083105MathSciNet
Zurück zum Zitat Debbasch F (2018) Action principles for quantum automata and lorentz invariance of discrete time quantum walks. ArXiv preprint arXiv:1806.02313 Debbasch F (2018) Action principles for quantum automata and lorentz invariance of discrete time quantum walks. ArXiv preprint arXiv:​1806.​02313
Zurück zum Zitat Destri C, de Vega HJ (1987) Light cone lattice approach to fermionic theories in 2-d: the massive thirring model. Nucl Phys B 290:363MathSciNet Destri C, de Vega HJ (1987) Light cone lattice approach to fermionic theories in 2-d: the massive thirring model. Nucl Phys B 290:363MathSciNet
Zurück zum Zitat di Molfetta G, Debbasch F (2012) Discrete-time quantum walks: continuous limit and symmetries. J Math Phys 53(12):123302–123302MathSciNetMATH di Molfetta G, Debbasch F (2012) Discrete-time quantum walks: continuous limit and symmetries. J Math Phys 53(12):123302–123302MathSciNetMATH
Zurück zum Zitat Di Molfetta G, Pérez A (2016) Quantum walks as simulators of neutrino oscillations in a vacuum and matter. New J Phys 18(10):103038 Di Molfetta G, Pérez A (2016) Quantum walks as simulators of neutrino oscillations in a vacuum and matter. New J Phys 18(10):103038
Zurück zum Zitat Di Molfetta G, Arrighi P (2019) A quantum walk with both a continuous-time discrete-space limit and a continuous spacetime limit. Manuscript Di Molfetta G, Arrighi P (2019) A quantum walk with both a continuous-time discrete-space limit and a continuous spacetime limit. Manuscript
Zurück zum Zitat Di Molfetta G, Brachet M, Debbasch F (2014) Quantum walks in artificial electric and gravitational fields. Phys A Stat Mech Appl 397:157–168MathSciNetMATH Di Molfetta G, Brachet M, Debbasch F (2014) Quantum walks in artificial electric and gravitational fields. Phys A Stat Mech Appl 397:157–168MathSciNetMATH
Zurück zum Zitat Durand-Lose J (2001) Representing reversible cellular automata with reversible block cellular automata. Discret Math Theor Comput Sci 145:154MATH Durand-Lose J (2001) Representing reversible cellular automata with reversible block cellular automata. Discret Math Theor Comput Sci 145:154MATH
Zurück zum Zitat Dürr C, Santha M (1996) A decision procedure for unitary linear quantum cellular automata. In: Proceedings of the 37th IEEE symposium on foundations of computer science. IEEE, pp 38–45 Dürr C, Santha M (1996) A decision procedure for unitary linear quantum cellular automata. In: Proceedings of the 37th IEEE symposium on foundations of computer science. IEEE, pp 38–45
Zurück zum Zitat Dürr C, Le Thanh H, Santha M (1996) A decision procedure for well-formed linear quantum cellular automata. In: Proceedings of STACS 96, Lecture Notes in Computer Science. Springer, pp 281–292 Dürr C, Le Thanh H, Santha M (1996) A decision procedure for well-formed linear quantum cellular automata. In: Proceedings of STACS 96, Lecture Notes in Computer Science. Springer, pp 281–292
Zurück zum Zitat D’Ariano GM, Perinotti P (2013) Derivation of the Dirac equation from principles of information processing. Pre-print arXiv:1306.1934 D’Ariano GM, Perinotti P (2013) Derivation of the Dirac equation from principles of information processing. Pre-print arXiv:​1306.​1934
Zurück zum Zitat Eisert J, Gross D (2009) Supersonic quantum communication. Phys Rev Lett 102(24):240501 Eisert J, Gross D (2009) Supersonic quantum communication. Phys Rev Lett 102(24):240501
Zurück zum Zitat Farrelly T (2019) A review of quantum cellular automaton (To appear on the arXiv) Farrelly T (2019) A review of quantum cellular automaton (To appear on the arXiv)
Zurück zum Zitat Farrelly TC, Short AJ (2014) Causal fermions in discrete space–time. Phys Rev A 89(1):012302 Farrelly TC, Short AJ (2014) Causal fermions in discrete space–time. Phys Rev A 89(1):012302
Zurück zum Zitat Farrelly TC (2015) Insights from quantum information into fundamental physics. PhD thesis, University of Cambridge arXiv:1708.08897 Farrelly TC (2015) Insights from quantum information into fundamental physics. PhD thesis, University of Cambridge arXiv:​1708.​08897
Zurück zum Zitat Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21(6):467–488MathSciNet Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21(6):467–488MathSciNet
Zurück zum Zitat Feynman RP (1986) Quantum mechanical computers. Found Phys (Hist Arch) 16(6):507–531MathSciNet Feynman RP (1986) Quantum mechanical computers. Found Phys (Hist Arch) 16(6):507–531MathSciNet
Zurück zum Zitat Fitzsimons J, Twamley J (2006) Globally controlled quantum wires for perfect qubit transport, mirroring, and computing. Phys Rev Lett 97(9):90502 Fitzsimons J, Twamley J (2006) Globally controlled quantum wires for perfect qubit transport, mirroring, and computing. Phys Rev Lett 97(9):90502
Zurück zum Zitat Gandy R (1980) Church’s thesis and principles for mechanisms. In: The Kleene Symposium, North-Holland Publishing Company, Amsterdam Gandy R (1980) Church’s thesis and principles for mechanisms. In: The Kleene Symposium, North-Holland Publishing Company, Amsterdam
Zurück zum Zitat Genske M, Alt W, Steffen A, Werner AH, Werner RF, Meschede D, Alberti A (2013) Electric quantum walks with individual atoms. Phys Rev Lett 110(19):190601 Genske M, Alt W, Steffen A, Werner AH, Werner RF, Meschede D, Alberti A (2013) Electric quantum walks with individual atoms. Phys Rev Lett 110(19):190601
Zurück zum Zitat Gross D, Nesme V, Vogts H, Werner RF (2012) Index theory of one dimensional quantum walks and cellular automata. Commun Math Phys 310(2):419–454MathSciNetMATH Gross D, Nesme V, Vogts H, Werner RF (2012) Index theory of one dimensional quantum walks and cellular automata. Commun Math Phys 310(2):419–454MathSciNetMATH
Zurück zum Zitat Gu M, Weedbrook C, Perales A, Nielsen MA (2009) More really is different. Phys D Nonlinear Phenom 238(9–10):835–839MathSciNetMATH Gu M, Weedbrook C, Perales A, Nielsen MA (2009) More really is different. Phys D Nonlinear Phenom 238(9–10):835–839MathSciNetMATH
Zurück zum Zitat Gütschow J (2010) Entanglement generation of Clifford quantum cellular automata. Appl Phys B 98:623–633MATH Gütschow J (2010) Entanglement generation of Clifford quantum cellular automata. Appl Phys B 98:623–633MATH
Zurück zum Zitat Gütschow J, Uphoff S, Werner RF, Zimborás Z (2010) Time asymptotics and entanglement generation of Clifford quantum cellular automata. J Math Phys 51(1):015203MathSciNetMATH Gütschow J, Uphoff S, Werner RF, Zimborás Z (2010) Time asymptotics and entanglement generation of Clifford quantum cellular automata. J Math Phys 51(1):015203MathSciNetMATH
Zurück zum Zitat Gütschow J, Nesme V, Werner RF (2012) Self-similarity of cellular automata on abelian groups. J Cell Autom 7(2):83–113MathSciNetMATH Gütschow J, Nesme V, Werner RF (2012) Self-similarity of cellular automata on abelian groups. J Cell Autom 7(2):83–113MathSciNetMATH
Zurück zum Zitat Haah J, Fidkowski L, Hastings MB (2018) Nontrivial quantum cellular automata in higher dimensions. ArXiv preprint arXiv:1812.01625 Haah J, Fidkowski L, Hastings MB (2018) Nontrivial quantum cellular automata in higher dimensions. ArXiv preprint arXiv:​1812.​01625
Zurück zum Zitat Ibarra OH, Jiang T (1987) On the computing power of one-way cellular arrays. In: Proceedings of ICALP 87. Springer, London, pp 550–562 Ibarra OH, Jiang T (1987) On the computing power of one-way cellular arrays. In: Proceedings of ICALP 87. Springer, London, pp 550–562
Zurück zum Zitat Inokuchi S, Mizoguchi Y (2005) Generalized partitioned quantum cellular automata and quantization of classical CA. Int J Unconv Comput 1(2):149–160 Inokuchi S, Mizoguchi Y (2005) Generalized partitioned quantum cellular automata and quantization of classical CA. Int J Unconv Comput 1(2):149–160
Zurück zum Zitat Joye A, Merkli M (2010) Dynamical localization of quantum walks in random environments. J Stat Phys 140(6):1–29MathSciNetMATH Joye A, Merkli M (2010) Dynamical localization of quantum walks in random environments. J Stat Phys 140(6):1–29MathSciNetMATH
Zurück zum Zitat Karafyllidis IG (2004) Definition and evolution of quantum cellular automata with two qubits per cell. Phys Rev A 70:044301 Karafyllidis IG (2004) Definition and evolution of quantum cellular automata with two qubits per cell. Phys Rev A 70:044301
Zurück zum Zitat Kari J (1991) Reversibility of 2D cellular automata is undecidable. In: Cellular automata: theory and experiment, vol 45. MIT Press, pp 379–385 Kari J (1991) Reversibility of 2D cellular automata is undecidable. In: Cellular automata: theory and experiment, vol 45. MIT Press, pp 379–385
Zurück zum Zitat Kari J (1996) Representation of reversible cellular automata with block permutations. Theory Comput Syst 29(1):47–61MathSciNetMATH Kari J (1996) Representation of reversible cellular automata with block permutations. Theory Comput Syst 29(1):47–61MathSciNetMATH
Zurück zum Zitat Kari J (1999) On the circuit depth of structurally reversible cellular automata. Fundam Inform 38(1–2):93–107MathSciNetMATH Kari J (1999) On the circuit depth of structurally reversible cellular automata. Fundam Inform 38(1–2):93–107MathSciNetMATH
Zurück zum Zitat Kari K (2005) Theory of cellular automata: a survey. Theor Comput Sci 334:2005MathSciNet Kari K (2005) Theory of cellular automata: a survey. Theor Comput Sci 334:2005MathSciNet
Zurück zum Zitat Kieu TD (2003) Computing the non-computable. Contemp Phys 44(1):51–71 Kieu TD (2003) Computing the non-computable. Contemp Phys 44(1):51–71
Zurück zum Zitat Love P, Boghosian B (2005) From Dirac to diffusion: decoherence in quantum lattice gases. Quantum Inf Process 4(4):335–354MATH Love P, Boghosian B (2005) From Dirac to diffusion: decoherence in quantum lattice gases. Quantum Inf Process 4(4):335–354MATH
Zurück zum Zitat Mallick A, Chandrashekar CM (2016) Dirac cellular automaton from split-step quantum walk. Sci Rep 6:25779 Mallick A, Chandrashekar CM (2016) Dirac cellular automaton from split-step quantum walk. Sci Rep 6:25779
Zurück zum Zitat Mallick A, Mandal S, Karan A, Chandrashekar CM (2019) Simulating dirac hamiltonian in curved space-time by split-step quantum walk. J Phys Commun 3(1):015012 Mallick A, Mandal S, Karan A, Chandrashekar CM (2019) Simulating dirac hamiltonian in curved space-time by split-step quantum walk. J Phys Commun 3(1):015012
Zurück zum Zitat Marcos D, Widmer P, Rico E, Hafezi M, Rabl P, Wiese U-J, Zoller P (2014) Two-dimensional lattice gauge theories with superconducting quantum circuits. Ann Phys 351:634–654MathSciNetMATH Marcos D, Widmer P, Rico E, Hafezi M, Rabl P, Wiese U-J, Zoller P (2014) Two-dimensional lattice gauge theories with superconducting quantum circuits. Ann Phys 351:634–654MathSciNetMATH
Zurück zum Zitat Mauro DAG, Franco M, Paolo P, Alessandro T (2014) The feynman problem and fermionic entanglement: fermionic theory versus qubit theory. Int J Mod Phys A 29(17):1430025MathSciNetMATH Mauro DAG, Franco M, Paolo P, Alessandro T (2014) The feynman problem and fermionic entanglement: fermionic theory versus qubit theory. Int J Mod Phys A 29(17):1430025MathSciNetMATH
Zurück zum Zitat Mazoyer J (1987) A six-state minimal time solution to the firing squad synchronization problem. Theor Comput Sci 50:183–238MathSciNetMATH Mazoyer J (1987) A six-state minimal time solution to the firing squad synchronization problem. Theor Comput Sci 50:183–238MathSciNetMATH
Zurück zum Zitat Meyer DA (1996) From quantum cellular automata to quantum lattice gases. J Stat Phys 85:551–574MathSciNetMATH Meyer DA (1996) From quantum cellular automata to quantum lattice gases. J Stat Phys 85:551–574MathSciNetMATH
Zurück zum Zitat Meyer DA, Shakeel A (2016) Quantum cellular automata without particles. Phys Rev A 93(1):012333 Meyer DA, Shakeel A (2016) Quantum cellular automata without particles. Phys Rev A 93(1):012333
Zurück zum Zitat Márquez-Martín I, Di Molfetta G, Pérez A (2017) Fermion confinement via quantum walks in (2+ 1)-dimensional and (3+ 1)-dimensional space-time. Phys Rev A 95(4):042112 Márquez-Martín I, Di Molfetta G, Pérez A (2017) Fermion confinement via quantum walks in (2+ 1)-dimensional and (3+ 1)-dimensional space-time. Phys Rev A 95(4):042112
Zurück zum Zitat Nagaj D, Wocjan P (2008) Hamiltonian quantum cellular automata in one dimension. Phys Rev A 78(3):032311 Nagaj D, Wocjan P (2008) Hamiltonian quantum cellular automata in one dimension. Phys Rev A 78(3):032311
Zurück zum Zitat Nielsen MA (1997) Computable functions, quantum measurements, and quantum dynamics. Phys Rev Lett 79(15):2915–2918 Nielsen MA (1997) Computable functions, quantum measurements, and quantum dynamics. Phys Rev Lett 79(15):2915–2918
Zurück zum Zitat Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, CambridgeMATH Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Paz JP, Zurek WH (2002) Environment-induced decoherence and the transition from quantum to classical. In: Fundamentals of quantum information, Lecture Notes in Physics. Springer, Berlin, pp 77–148 Paz JP, Zurek WH (2002) Environment-induced decoherence and the transition from quantum to classical. In: Fundamentals of quantum information, Lecture Notes in Physics. Springer, Berlin, pp 77–148
Zurück zum Zitat Pérez-Delgado CA, Cheung D (2007) Local unreversible cellular automaton ableitary quantum cellular automata. Phys Rev A 76(3):32320MathSciNet Pérez-Delgado CA, Cheung D (2007) Local unreversible cellular automaton ableitary quantum cellular automata. Phys Rev A 76(3):32320MathSciNet
Zurück zum Zitat Raussendorf R (2005) Quantum cellular automaton for universal quantum computation. Phys Rev A 72(2):22301MathSciNet Raussendorf R (2005) Quantum cellular automaton for universal quantum computation. Phys Rev A 72(2):22301MathSciNet
Zurück zum Zitat Raynal P (2017) Simple derivation of the Weyl and Dirac quantum cellular automata. Phys Rev A 95:062344 Raynal P (2017) Simple derivation of the Weyl and Dirac quantum cellular automata. Phys Rev A 95:062344
Zurück zum Zitat Robens C, Brakhane S, Meschede D, Alberti A (2017) Quantum walks with neutral atoms: quantum interference effects of one and two particles. In: Laser spectroscopy: XXII international conference on laser spectroscopy (ICOLS2015). World Scientific, pp 1–15 Robens C, Brakhane S, Meschede D, Alberti A (2017) Quantum walks with neutral atoms: quantum interference effects of one and two particles. In: Laser spectroscopy: XXII international conference on laser spectroscopy (ICOLS2015). World Scientific, pp 1–15
Zurück zum Zitat Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R (2012) Two-particle Bosonic-Fermionic quantum walk via integrated photonics. Phys Rev Lett 108:010502 Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R (2012) Two-particle Bosonic-Fermionic quantum walk via integrated photonics. Phys Rev Lett 108:010502
Zurück zum Zitat Schaeffer L (2015) A physically universal quantum cellular automaton. In: Jarkko K (ed) Cellular automata and discrete complex systems. Springer, Berlin, pp 46–58MATH Schaeffer L (2015) A physically universal quantum cellular automaton. In: Jarkko K (ed) Cellular automata and discrete complex systems. Springer, Berlin, pp 46–58MATH
Zurück zum Zitat Schlingemann DM, Vogts H, Werner RF (2008) On the structure of Clifford quantum cellular automata. J Math Phys 49:112104MathSciNetMATH Schlingemann DM, Vogts H, Werner RF (2008) On the structure of Clifford quantum cellular automata. J Math Phys 49:112104MathSciNetMATH
Zurück zum Zitat Schumacher B, Werner R (2004) Reversible quantum cellular automata. arXiv pre-print quant-ph/0405174, Schumacher B, Werner R (2004) Reversible quantum cellular automata. arXiv pre-print quant-ph/0405174,
Zurück zum Zitat Shakeel A, Love PJ (2013) When is a quantum cellular automaton (QCA) a quantum lattice gas automaton (QLGA)? J Math Phys 54(9):092203MathSciNetMATH Shakeel A, Love PJ (2013) When is a quantum cellular automaton (QCA) a quantum lattice gas automaton (QLGA)? J Math Phys 54(9):092203MathSciNetMATH
Zurück zum Zitat Strauch FW (2006a) Connecting the discrete-and continuous-time quantum walks. Phys Rev A 74(3):030301MathSciNet Strauch FW (2006a) Connecting the discrete-and continuous-time quantum walks. Phys Rev A 74(3):030301MathSciNet
Zurück zum Zitat Strauch FW (2007) Relativistic effects and rigorous limits for discrete-and continuous-time quantum walks. J Math Phys 48:082102MathSciNetMATH Strauch FW (2007) Relativistic effects and rigorous limits for discrete-and continuous-time quantum walks. J Math Phys 48:082102MathSciNetMATH
Zurück zum Zitat Subrahmanyam V (2004) Entanglement dynamics and quantum-state transport in spin chains. Phys Rev A 69:034304 Subrahmanyam V (2004) Entanglement dynamics and quantum-state transport in spin chains. Phys Rev A 69:034304
Zurück zum Zitat Subrahmanyam V, Lakshminarayan A (2006) Transport of entanglement through a Heisenberg-XY spin chain. Phys Lett A 349(1–4):164–169 Subrahmanyam V, Lakshminarayan A (2006) Transport of entanglement through a Heisenberg-XY spin chain. Phys Lett A 349(1–4):164–169
Zurück zum Zitat Succi S, Benzi R (1993) Lattice boltzmann equation for quantum mechanics. Phys D Nonlinear Phenom 69(3):327–332MathSciNetMATH Succi S, Benzi R (1993) Lattice boltzmann equation for quantum mechanics. Phys D Nonlinear Phenom 69(3):327–332MathSciNetMATH
Zurück zum Zitat t’Hooft G (2016) The cellular automaton interpretation of quantum mechanics, vol 185. Fundamental theories of physics. Springer, Berlin t’Hooft G (2016) The cellular automaton interpretation of quantum mechanics, vol 185. Fundamental theories of physics. Springer, Berlin
Zurück zum Zitat Twamley J (2003) Quantum cellular automata quantum computing with endohedral fullerenes. Phys Rev A 67(5):52318–52500MathSciNet Twamley J (2003) Quantum cellular automata quantum computing with endohedral fullerenes. Phys Rev A 67(5):52318–52500MathSciNet
Zurück zum Zitat Vallejo A, Romanelli A, Donangelo R (2018) Initial-state-dependent thermalization in open qubits. Phys Rev A 98(3):032319 Vallejo A, Romanelli A, Donangelo R (2018) Initial-state-dependent thermalization in open qubits. Phys Rev A 98(3):032319
Zurück zum Zitat Van Dam W (1996) A Universal Quantum Cellular Automaton. In: Proceedings of PhysComp96, Inter Journal manuscript 91. New England Complex Systems Institute, pp 323–331 Van Dam W (1996) A Universal Quantum Cellular Automaton. In: Proceedings of PhysComp96, Inter Journal manuscript 91. New England Complex Systems Institute, pp 323–331
Zurück zum Zitat Van Dam W (1996) Quantum cellular automata. Masters thesis, University of Nijmegen, The Netherlands Van Dam W (1996) Quantum cellular automata. Masters thesis, University of Nijmegen, The Netherlands
Zurück zum Zitat Vollbrecht KGH, Cirac JI (2006) Reversible universal quantum computation within translation-invariant systems. Phys Rev A 73(1):012324 Vollbrecht KGH, Cirac JI (2006) Reversible universal quantum computation within translation-invariant systems. Phys Rev A 73(1):012324
Zurück zum Zitat von Neumann J (1955) Mathematical foundations of quantum mechanics. Princeton University Press, PrincetonMATH von Neumann J (1955) Mathematical foundations of quantum mechanics. Princeton University Press, PrincetonMATH
Zurück zum Zitat von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Champaign von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Champaign
Zurück zum Zitat Wang G (2017) Efficient quantum algorithms for analyzing large sparse electrical networks. Quantum Inf Comput 17(11–12):987–1026MathSciNet Wang G (2017) Efficient quantum algorithms for analyzing large sparse electrical networks. Quantum Inf Comput 17(11–12):987–1026MathSciNet
Zurück zum Zitat Watrous J (1995) On one-dimensional quantum cellular automata. In: Annual IEEE symposium on foundations of computer science, pp 528–537 Watrous J (1995) On one-dimensional quantum cellular automata. In: Annual IEEE symposium on foundations of computer science, pp 528–537
Zurück zum Zitat Weinstein YS, Hellberg CS (2004) Quantum cellular automata pseudorandom maps. Phys Rev A 69(6):062301MathSciNetMATH Weinstein YS, Hellberg CS (2004) Quantum cellular automata pseudorandom maps. Phys Rev A 69(6):062301MathSciNetMATH
Metadaten
Titel
An overview of quantum cellular automata
verfasst von
P. Arrighi
Publikationsdatum
20.09.2019
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 4/2019
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-019-09762-6

Weitere Artikel der Ausgabe 4/2019

Natural Computing 4/2019 Zur Ausgabe

EditorialNotes

Preface