2015 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Big-Data Analytics and Cloud Computing
The growth of Big Data has expanded the traditional data science approaches to address the multiple challenges associated with this field. Furthermore, the wealth of data available from a wide range of sources has fundamentally changed the requirements for theoretical methods to provide insight into this field. In this chapter, a general overview on some theoretical aspects related to Big Data is discussed.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Mayer-Schönberger V, Cukier K (2013) Big data: a revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt, Boston
2.
James IM (1999) Preface. In: James IM (ed) History of topology, North-Holland, Amsterdam, p v. doi:
10.1016/B978-044482375-5/50000-6. ISBN 9780444823755
3.
Jänich K (1984) Topology. Springer, New York
4.
Lum PY, Singh G, Lehman A, Ishkanov T, Vejdemo-Johansson M, Alagappan M, Carlsson J, Carlsson G (2013) Extracting insights from the shape of complex data using topology. Sci Rep 3, 1236
CrossRef
5.
Dey TK, Fan F, Wang Y (2013) Graph induced complex on point data. In: Proceedings of the 9th annual symposium on computational geometry. Rio de Janeiro, Brazil, June 17–20
6.
7.
Carlsson G (2009) Topology and data. Bull Am Math Soc 46(2):255–308
MathSciNetCrossRefMATH
8.
Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47
MathSciNetCrossRefMATH
9.
Trovati M (2015) Reduced topologically real-world networks: a big-data approach. Int J Distrib Syst Technol (IJDST), 6(2):13–27
10.
Trovati M, Bessis N (2015) An influence assessment method based on co-occurrence for topologically reduced big data sets. Soft Comput. doi:
10.1007/s00500-015-1621-9
11.
Milgram S (1984) The individual in a social world. McGraw-Hill, New York
12.
Trovati M, Bessis N, Palmieri F, Hill R Extracting probabilistic information from unstructured large scale datasets. IEEE Syst J (under review)
13.
Duda R, Hart PE (1973) Pattern classification and science analysis. Wiley, New York
MATH
14.
Trovati M, Bessis N, Huber A, Zelenkauskaite A, Asimakopoulou E (2014) Extraction, identification and ranking of network structures from data sets. In: Proceedings of CISIS. Birmingham, UK, pp 331–337
15.
Trovati M, Asimakopoulou E, Bessis N (2014) An analytical tool to map big data to networks with reduced topologies. In: Proceedings of InCoS. Salerno, Italy, pp 411–414
- Titel
- An Overview of Some Theoretical Topological Aspects of Big Data
- DOI
- https://doi.org/10.1007/978-3-319-25313-8_4
- Autor:
-
Marcello Trovati
- Sequenznummer
- 4
- Kapitelnummer
- Chapter 4