Skip to main content
Erschienen in: Wireless Personal Communications 4/2020

29.07.2020

An Ultra-Low Power Programmable Current Gain Amplifier with a Novel Current Gain Controller Structure for IoT Applications

verfasst von: A. R. Ghorbani, M. B. Ghaznavi-Ghoushchi

Erschienen in: Wireless Personal Communications | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper a novel structure is introduced for programming current gain amplifier that works in near subthreshold regime. The flipped voltage follower is utilized to achieve different gain and the subthreshold MOS is using in order to decrease power consumption. Class AB structure is used to attain a wide dynamic range. These techniques are led to achieving low complexity and low area and ultra-low power compare to previous PGA. Moreover, by using the resistor the current is converted to voltage in output node, hence, the voltage gain is achieved simply by using this structure. The post-layout simulation result shows the proposed structure could provide current gain from 0 to 25 dB, while constant bandwidth of 10 MHz. However, the power consumption of the proposed PCGA is only 120 nW with ± 0.6 V supply. These results are verified by the post-simulations of the proposed PCGA that performed by 65 nm standard CMOS technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ghorbani, A., & Safari, L. (2011). High CMRR low-voltage low power current output stage with a novel CMFB. In 2011 3rd international conference on computer research and development (ICCRD) (pp. 382–386). Ghorbani, A., & Safari, L. (2011). High CMRR low-voltage low power current output stage with a novel CMFB. In 2011 3rd international conference on computer research and development (ICCRD) (pp. 382–386).
2.
Zurück zum Zitat Azhari, S. J., Ghorbani, A., & Safari, L. (2011). A novel fully differential current buffer with ultra low input impedance, high CMRR, low power and low voltage. In 2011 3rd international conference on electronics computer technology (ICECT) (pp. 229–233). Azhari, S. J., Ghorbani, A., & Safari, L. (2011). A novel fully differential current buffer with ultra low input impedance, high CMRR, low power and low voltage. In 2011 3rd international conference on electronics computer technology (ICECT) (pp. 229–233).
3.
Zurück zum Zitat Ghorbani, A., & Ghanaatian, A. (2012). A novel high CMRR, low power and low voltage COS with QFG. Circuits and Systems, 3(3), 6.CrossRef Ghorbani, A., & Ghanaatian, A. (2012). A novel high CMRR, low power and low voltage COS with QFG. Circuits and Systems, 3(3), 6.CrossRef
4.
Zurück zum Zitat Ara, M. B., & Azhari, S. J. (2016). A low-voltage fully differential pure current mode current operational amplifier. Circuits, Systems, and Signal Processing, 35, 2626–2639.CrossRef Ara, M. B., & Azhari, S. J. (2016). A low-voltage fully differential pure current mode current operational amplifier. Circuits, Systems, and Signal Processing, 35, 2626–2639.CrossRef
5.
Zurück zum Zitat Da Toh, W., Zheng, Y., & Heng, C.-H. (2012). Low power digital baseband for impulse radio ultra-wideband transceiver. Circuits, Systems, and Signal Processing, 31, 223–235.MathSciNetCrossRef Da Toh, W., Zheng, Y., & Heng, C.-H. (2012). Low power digital baseband for impulse radio ultra-wideband transceiver. Circuits, Systems, and Signal Processing, 31, 223–235.MathSciNetCrossRef
6.
Zurück zum Zitat Andreev, S., Galinina, O., Pyattaev, A., Gerasimenko, M., Tirronen, T., Torsner, J., et al. (2015). Understanding the IoT connectivity landscape: A contemporary M2M radio technology roadmap. IEEE Communications Magazine, 53, 32–40.CrossRef Andreev, S., Galinina, O., Pyattaev, A., Gerasimenko, M., Tirronen, T., Torsner, J., et al. (2015). Understanding the IoT connectivity landscape: A contemporary M2M radio technology roadmap. IEEE Communications Magazine, 53, 32–40.CrossRef
7.
Zurück zum Zitat Treurniet, J. J., Sarkar, C., Prasad, R. V., & De Boer, W. (2015). Energy consumption and latency in BLE devices under mutual interference: An experimental study. In 2015 3rd international conference on future Internet of Things and cloud (FiCloud) (pp. 333–340). Treurniet, J. J., Sarkar, C., Prasad, R. V., & De Boer, W. (2015). Energy consumption and latency in BLE devices under mutual interference: An experimental study. In 2015 3rd international conference on future Internet of Things and cloud (FiCloud) (pp. 333–340).
8.
Zurück zum Zitat Vucinic, M., Tourancheau, B., Rousseau, F., Duda, A., Damon, L., & Guizzetti, R. (2014). Energy cost of security in an energy-harvested IEEE 802.15. 4 Wireless Sensor Network. In 2014 3rd Mediterranean conference on embedded computing (MECO) (pp. 198–201). Vucinic, M., Tourancheau, B., Rousseau, F., Duda, A., Damon, L., & Guizzetti, R. (2014). Energy cost of security in an energy-harvested IEEE 802.15. 4 Wireless Sensor Network. In 2014 3rd Mediterranean conference on embedded computing (MECO) (pp. 198–201).
9.
Zurück zum Zitat Balicki, J., Beringer, M., Korlub, W., Przybylek, P., Tyszka, M., & Zadroga, M. (2015). Collective citizens’ behavior modelling with support of the Internet of Things and Big Data. In 2015 8th international conference on human system interactions (HSI) (pp. 61–67). Balicki, J., Beringer, M., Korlub, W., Przybylek, P., Tyszka, M., & Zadroga, M. (2015). Collective citizens’ behavior modelling with support of the Internet of Things and Big Data. In 2015 8th international conference on human system interactions (HSI) (pp. 61–67).
10.
Zurück zum Zitat Ghorbani, A., & Ghaznavi-Ghoushchi, M. (2017). A novel transceiver structure including power and audio amplifiers for Internet of Things applications. Computers & Electrical Engineering, 62, 29–43.CrossRef Ghorbani, A., & Ghaznavi-Ghoushchi, M. (2017). A novel transceiver structure including power and audio amplifiers for Internet of Things applications. Computers & Electrical Engineering, 62, 29–43.CrossRef
11.
Zurück zum Zitat De Matteis, M., De Blasi, M., Cocciolo, G., Baschirotto, A., & Sabatini, M. (2011). A 1 V 115 μW 20nV/√ Hz 15–50 dB-range PGA with 5 MHz bandwidth for UWB personal area network. In 2011 18th IEEE international conference on electronics, circuits and systems (ICECS) (pp. 77–80). De Matteis, M., De Blasi, M., Cocciolo, G., Baschirotto, A., & Sabatini, M. (2011). A 1 V 115 μW 20nV/√ Hz 15–50 dB-range PGA with 5 MHz bandwidth for UWB personal area network. In 2011 18th IEEE international conference on electronics, circuits and systems (ICECS) (pp. 77–80).
12.
Zurück zum Zitat Ratametha, C., Tepwimonpetkun, S., & Wattanapanitch, W. (2019). A 2.64-μW 71-dB SNDR discrete-time signal-folding amplifier for reducing ADC’s resolution requirement in wearable ECG acquisition systems. IEEE Transactions on Biomedical Circuits and Systems, 14, 48–64.CrossRef Ratametha, C., Tepwimonpetkun, S., & Wattanapanitch, W. (2019). A 2.64-μW 71-dB SNDR discrete-time signal-folding amplifier for reducing ADC’s resolution requirement in wearable ECG acquisition systems. IEEE Transactions on Biomedical Circuits and Systems, 14, 48–64.CrossRef
13.
Zurück zum Zitat Petraglia, A., & Mitra, S. (1991). Switched-capacitor equalizers with digitally programmable tuning characteristics. IEEE Transactions on Circuits and Systems, 38, 1322–1331.CrossRef Petraglia, A., & Mitra, S. (1991). Switched-capacitor equalizers with digitally programmable tuning characteristics. IEEE Transactions on Circuits and Systems, 38, 1322–1331.CrossRef
14.
Zurück zum Zitat Mazurek, A., & Wawryn, K. (2001). Programmable current mode circuits. In The 8th IEEE international conference on electronics, circuits and systems, 2001. ICECS 2001 (pp. 553–556). Mazurek, A., & Wawryn, K. (2001). Programmable current mode circuits. In The 8th IEEE international conference on electronics, circuits and systems, 2001. ICECS 2001 (pp. 553–556).
15.
Zurück zum Zitat Paulino, N., Franca, J., & Martins, F. (1995). Programmable CMOS switched-capacitor biquad using quasi-passive algorithmic DAC’s. IEEE Journal of Solid-State Circuits, 30, 715–719.CrossRef Paulino, N., Franca, J., & Martins, F. (1995). Programmable CMOS switched-capacitor biquad using quasi-passive algorithmic DAC’s. IEEE Journal of Solid-State Circuits, 30, 715–719.CrossRef
16.
Zurück zum Zitat Islam, M. S., Singh, S. K., Xereas, G., Chodavarapu, V. P., & Mandal, S. (2019). A digitally programmable CMOS feedback ASIC for highly stable MEMS-referenced oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 66, 4158–4171.CrossRef Islam, M. S., Singh, S. K., Xereas, G., Chodavarapu, V. P., & Mandal, S. (2019). A digitally programmable CMOS feedback ASIC for highly stable MEMS-referenced oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 66, 4158–4171.CrossRef
17.
Zurück zum Zitat El-Adawy, A. A., Soliman, A. M., & Elwan, H. O. (2002). Low voltage digitally controlled CMOS current conveyor. AEU-International Journal of Electronics and Communications, 56, 137–144.CrossRef El-Adawy, A. A., Soliman, A. M., & Elwan, H. O. (2002). Low voltage digitally controlled CMOS current conveyor. AEU-International Journal of Electronics and Communications, 56, 137–144.CrossRef
18.
Zurück zum Zitat Hsu, C.-C., & Wu, J.-T. (2003). A highly linear 125-MHz CMOS switched-resistor programmable-gain amplifier. IEEE Journal of Solid-State Circuits, 38, 1663–1670.CrossRef Hsu, C.-C., & Wu, J.-T. (2003). A highly linear 125-MHz CMOS switched-resistor programmable-gain amplifier. IEEE Journal of Solid-State Circuits, 38, 1663–1670.CrossRef
19.
Zurück zum Zitat Calvo, B., Celma, S., & Sanz, M. (2003). High-frequency digitally programmable gain amplifier. Electronics Letters, 39, 1.CrossRef Calvo, B., Celma, S., & Sanz, M. (2003). High-frequency digitally programmable gain amplifier. Electronics Letters, 39, 1.CrossRef
20.
Zurück zum Zitat Rijns, J. (1996). CMOS low-distortion high-frequency variable-gain amplifier. IEEE Journal of Solid-State Circuits, 31, 1029–1034.CrossRef Rijns, J. (1996). CMOS low-distortion high-frequency variable-gain amplifier. IEEE Journal of Solid-State Circuits, 31, 1029–1034.CrossRef
21.
Zurück zum Zitat Elwan, H. O., & Ismail, M. (2000). Digitally programmable decibel-linear CMOS VGA for low-power mixed-signal applications. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47, 388–398.CrossRef Elwan, H. O., & Ismail, M. (2000). Digitally programmable decibel-linear CMOS VGA for low-power mixed-signal applications. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47, 388–398.CrossRef
22.
Zurück zum Zitat El-Adawy, A., Soliman, A., & Elwan, H. (2000). Low voltage fully differential CMOS voltage mode digitally controlled variable gain amplifier. Microelectronics Journal, 31, 139–146.CrossRef El-Adawy, A., Soliman, A., & Elwan, H. (2000). Low voltage fully differential CMOS voltage mode digitally controlled variable gain amplifier. Microelectronics Journal, 31, 139–146.CrossRef
23.
Zurück zum Zitat Rahmatian, B., & Mirabbasi, S. (2007). A low-power 75 dB digitally programmable variable-gain amplifier in 0.18 μm CMOS. Canadian Journal of Electrical and Computer Engineering, 32, 181–186.CrossRef Rahmatian, B., & Mirabbasi, S. (2007). A low-power 75 dB digitally programmable variable-gain amplifier in 0.18 μm CMOS. Canadian Journal of Electrical and Computer Engineering, 32, 181–186.CrossRef
24.
Zurück zum Zitat Calvo, B., Celma, S., & Sanz, M. (2006). Low-voltage low-power 100 MHz programmable gain amplifier in 0.35 μm CMOS. Analog Integrated Circuits and Signal Processing, 48, 263–266.CrossRef Calvo, B., Celma, S., & Sanz, M. (2006). Low-voltage low-power 100 MHz programmable gain amplifier in 0.35 μm CMOS. Analog Integrated Circuits and Signal Processing, 48, 263–266.CrossRef
25.
Zurück zum Zitat Angkeaw, K., & Prommee, P. (2011). Two digitally programmable gain amplifiers based on current conveyors. Analog Integrated Circuits and Signal Processing, 67, 253–260.CrossRef Angkeaw, K., & Prommee, P. (2011). Two digitally programmable gain amplifiers based on current conveyors. Analog Integrated Circuits and Signal Processing, 67, 253–260.CrossRef
26.
Zurück zum Zitat Kahng, D., & Sze, S. M. (1967). A floating gate and its application to memory devices. Bell System Technical Journal, 46, 1288–1295.CrossRef Kahng, D., & Sze, S. M. (1967). A floating gate and its application to memory devices. Bell System Technical Journal, 46, 1288–1295.CrossRef
27.
Zurück zum Zitat Vittoz, E., & Fellrath, J. (1977). CMOS analog integrated circuits based on weak inversion operations. IEEE Journal of Solid-State Circuits, 12, 224–231.CrossRef Vittoz, E., & Fellrath, J. (1977). CMOS analog integrated circuits based on weak inversion operations. IEEE Journal of Solid-State Circuits, 12, 224–231.CrossRef
28.
Zurück zum Zitat Blalock, B. J., Allen, P. E., & Rincon-Mora, G. A. (1998). Designing 1-V op amps using standard digital CMOS technology. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45, 769–780.CrossRef Blalock, B. J., Allen, P. E., & Rincon-Mora, G. A. (1998). Designing 1-V op amps using standard digital CMOS technology. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45, 769–780.CrossRef
29.
Zurück zum Zitat Comer, D. J., & Comer, D. T. (2004). Using the weak inversion region to optimize input stage design of CMOS op amps. IEEE Transactions on Circuits and Systems II: Express Briefs, 51, 8–14.CrossRef Comer, D. J., & Comer, D. T. (2004). Using the weak inversion region to optimize input stage design of CMOS op amps. IEEE Transactions on Circuits and Systems II: Express Briefs, 51, 8–14.CrossRef
30.
Zurück zum Zitat Tajalli, A., Brauer, E. J., Leblebici, Y., & Vittoz, E. (2008). Subthreshold source-coupled logic circuits for ultra-low-power applications. IEEE Journal of Solid-State Circuits, 43, 1699–1710.CrossRef Tajalli, A., Brauer, E. J., Leblebici, Y., & Vittoz, E. (2008). Subthreshold source-coupled logic circuits for ultra-low-power applications. IEEE Journal of Solid-State Circuits, 43, 1699–1710.CrossRef
31.
Zurück zum Zitat Annema, A. (1994). Hardware realisation of a neuron transfer function and its derivative. Electronics Letters, 30, 576–577.CrossRef Annema, A. (1994). Hardware realisation of a neuron transfer function and its derivative. Electronics Letters, 30, 576–577.CrossRef
32.
Zurück zum Zitat Casson, A. J., & Rodriguez-Villegas, E. (2011). A 60 pW g C continuous wavelet transform circuit for portable EEG systems. IEEE Journal of Solid-State Circuits, 46, 1406–1415.CrossRef Casson, A. J., & Rodriguez-Villegas, E. (2011). A 60 pW g C continuous wavelet transform circuit for portable EEG systems. IEEE Journal of Solid-State Circuits, 46, 1406–1415.CrossRef
33.
Zurück zum Zitat Al-Ashmouny, K., Chang, S.-I., & Yoon, E. (2011). A 8.6 μW 3-bit programmable gain amplifier for multiplexed-input neural recording systems. In 2011 annual international conference of the IEEE engineering in medicine and biology society (pp. 2945–2948). Al-Ashmouny, K., Chang, S.-I., & Yoon, E. (2011). A 8.6 μW 3-bit programmable gain amplifier for multiplexed-input neural recording systems. In 2011 annual international conference of the IEEE engineering in medicine and biology society (pp. 2945–2948).
34.
Zurück zum Zitat Harjani, R. (1995). A low-power CMOS VGA for 50 Mb/s disk drive read channels. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 42, 370–376.CrossRef Harjani, R. (1995). A low-power CMOS VGA for 50 Mb/s disk drive read channels. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 42, 370–376.CrossRef
35.
Zurück zum Zitat Garcia-Alberdi, C., Aguado-Ruiz, J., Lopez-Martin, A. J., & Ramirez-Angulo, J. (2013). Micropower class-AB VGA with gain-independent bandwidth. IEEE Transactions on Circuits and Systems II: Express Briefs, 60, 397–401.CrossRef Garcia-Alberdi, C., Aguado-Ruiz, J., Lopez-Martin, A. J., & Ramirez-Angulo, J. (2013). Micropower class-AB VGA with gain-independent bandwidth. IEEE Transactions on Circuits and Systems II: Express Briefs, 60, 397–401.CrossRef
36.
Zurück zum Zitat Koolivand, Y., Rezaeiyan, Y., Shoaei, O., Jafarabadi-Ashtiani, S., Moftakharzadeh, A., & Ahmadvand, M. (2019). Modified linear in dB, sub 0.2 dB gain-step CMOS programmable gain amplifier for ultrasound applications. Analog Integrated Circuits and Signal Processing, 99, 497–508.CrossRef Koolivand, Y., Rezaeiyan, Y., Shoaei, O., Jafarabadi-Ashtiani, S., Moftakharzadeh, A., & Ahmadvand, M. (2019). Modified linear in dB, sub 0.2 dB gain-step CMOS programmable gain amplifier for ultrasound applications. Analog Integrated Circuits and Signal Processing, 99, 497–508.CrossRef
37.
Zurück zum Zitat Liu, H., Zhu, X., Lu, M., Sun, Y., & Yeo, K. S. (2019). Design of reconfigurable dB-linear variable-gain amplifier and switchable-order gm-C filter in 65-nm CMOS technology. IEEE Transactions on Microwave Theory and Techniques, 67, 5148–5158.CrossRef Liu, H., Zhu, X., Lu, M., Sun, Y., & Yeo, K. S. (2019). Design of reconfigurable dB-linear variable-gain amplifier and switchable-order gm-C filter in 65-nm CMOS technology. IEEE Transactions on Microwave Theory and Techniques, 67, 5148–5158.CrossRef
38.
Zurück zum Zitat Mazza, G., Cirio, R., Donetti, M., La Rosa, A., Luparia, A., Marchetto, F., et al. (2005). A 64-channel wide dynamic range charge measurement ASIC for strip and pixel ionization detectors. IEEE Transactions on Nuclear Science, 52, 847–853.CrossRef Mazza, G., Cirio, R., Donetti, M., La Rosa, A., Luparia, A., Marchetto, F., et al. (2005). A 64-channel wide dynamic range charge measurement ASIC for strip and pixel ionization detectors. IEEE Transactions on Nuclear Science, 52, 847–853.CrossRef
39.
Zurück zum Zitat Ghorbani, A., & Ghaznavi-Ghoushchi, M. (2017). A novel fully differential CMOS Class-E power amplifier with higher output power and efficiency for IoT application. Wireless Personal Communications, 97, 3203–3213.CrossRef Ghorbani, A., & Ghaznavi-Ghoushchi, M. (2017). A novel fully differential CMOS Class-E power amplifier with higher output power and efficiency for IoT application. Wireless Personal Communications, 97, 3203–3213.CrossRef
40.
Zurück zum Zitat Kumngern, M., Khateb, F., & Kulej, T. (2015). A digitally programmable gain amplifier for ultra-low-power applications. Analog Integrated Circuits and Signal Processing, 85, 433–443.CrossRef Kumngern, M., Khateb, F., & Kulej, T. (2015). A digitally programmable gain amplifier for ultra-low-power applications. Analog Integrated Circuits and Signal Processing, 85, 433–443.CrossRef
41.
Zurück zum Zitat Carvajal, R. G., Ramírez-Angulo, J., López-Martín, A. J., Torralba, A., Galán, J. A. G., Carlosena, A., et al. (2005). The flipped voltage follower: A useful cell for low-voltage low-power circuit design. IEEE Transactions on Circuits and Systems I: Regular Papers, 52, 1276–1291.CrossRef Carvajal, R. G., Ramírez-Angulo, J., López-Martín, A. J., Torralba, A., Galán, J. A. G., Carlosena, A., et al. (2005). The flipped voltage follower: A useful cell for low-voltage low-power circuit design. IEEE Transactions on Circuits and Systems I: Regular Papers, 52, 1276–1291.CrossRef
42.
Zurück zum Zitat Yamaji, T., Kanou, N., & Itakura, T. (2002). A temperature-stable CMOS variable-gain amplifier with 80-dB linearly controlled gain range. IEEE Journal of Solid-State Circuits, 37, 553–558.CrossRef Yamaji, T., Kanou, N., & Itakura, T. (2002). A temperature-stable CMOS variable-gain amplifier with 80-dB linearly controlled gain range. IEEE Journal of Solid-State Circuits, 37, 553–558.CrossRef
43.
Zurück zum Zitat Mostafa, M., Embabi, S., & Elmala, M. (2001). A 60 dB, 246 MHz CMOS variable gain amplifier for subsampling GSM receivers. In Proceedings of the 2001 international symposium on Low power electronics and design (pp. 117–122). Mostafa, M., Embabi, S., & Elmala, M. (2001). A 60 dB, 246 MHz CMOS variable gain amplifier for subsampling GSM receivers. In Proceedings of the 2001 international symposium on Low power electronics and design (pp. 117–122).
44.
Zurück zum Zitat Zheng, Y., Yan, J., & Xu, Y. P. (2009). A CMOS VGA with DC offset cancellation for direct-conversion receivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 56, 103–113.MathSciNetCrossRef Zheng, Y., Yan, J., & Xu, Y. P. (2009). A CMOS VGA with DC offset cancellation for direct-conversion receivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 56, 103–113.MathSciNetCrossRef
45.
Zurück zum Zitat Tadjpour, S., Behbahani, F., & Abidi, A. (1998). A CMOS variable gain amplifier for a wideband wireless receiver. In 1998 symposium on VLSI circuits, 1998. Digest of technical papers (pp. 86–89). Tadjpour, S., Behbahani, F., & Abidi, A. (1998). A CMOS variable gain amplifier for a wideband wireless receiver. In 1998 symposium on VLSI circuits, 1998. Digest of technical papers (pp. 86–89).
46.
Zurück zum Zitat Gatta, F., Manstretta, D., Rossi, P., & Svelto, F. (2004). A fully integrated 0.18-μm CMOS direct conversion receiver front-end with on-chip LO for UMTS. IEEE Journal of Solid-State Circuits, 39, 15–23.CrossRef Gatta, F., Manstretta, D., Rossi, P., & Svelto, F. (2004). A fully integrated 0.18-μm CMOS direct conversion receiver front-end with on-chip LO for UMTS. IEEE Journal of Solid-State Circuits, 39, 15–23.CrossRef
47.
Zurück zum Zitat M. Elmala, B. Carlton, R. Bishop, & K. Soumyanath, “A 1.4 V, 13.5 mW, 10/100 MHz 6 th order elliptic filter/VGA with DC-offset correction in 90 nm CMOS [WLAN applications]. In 2005 IEEE radio frequency integrated circuits (RFIC) symposium-digest of papers, 2005 (pp. 189–192). M. Elmala, B. Carlton, R. Bishop, & K. Soumyanath, “A 1.4 V, 13.5 mW, 10/100 MHz 6 th order elliptic filter/VGA with DC-offset correction in 90 nm CMOS [WLAN applications]. In 2005 IEEE radio frequency integrated circuits (RFIC) symposium-digest of papers, 2005 (pp. 189–192).
Metadaten
Titel
An Ultra-Low Power Programmable Current Gain Amplifier with a Novel Current Gain Controller Structure for IoT Applications
verfasst von
A. R. Ghorbani
M. B. Ghaznavi-Ghoushchi
Publikationsdatum
29.07.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07547-0

Weitere Artikel der Ausgabe 4/2020

Wireless Personal Communications 4/2020 Zur Ausgabe

Neuer Inhalt