Skip to main content
Erschienen in: Neuroinformatics 2/2019

11.08.2018 | Original Article

An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity

verfasst von: Michael de Ridder, Karsten Klein, Jean Yang, Pengyi Yang, Jim Lagopoulos, Ian Hickie, Max Bennett, Jinman Kim

Erschienen in: Neuroinformatics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Analysis and interpretation of functional magnetic resonance imaging (fMRI) has been used to characterise many neuronal diseases, such as schizophrenia, bipolar disorder and Alzheimer’s disease. Functional connectivity networks (FCNs) are widely used because they greatly reduce the amount of data that needs to be interpreted and they provide a common network structure that can be directly compared. However, FCNs contain a range of data uncertainties stemming from inherent limitations, e.g. during acquisition, as well as the loss of voxel-level data, and the use of thresholding in data abstraction. Additionally, human uncertainties arise during interpretation due to the complexity in understanding the data. While existing FCN visual analytics tools have begun to mitigate the human ambiguities, reducing the impact of data limitations is an open problem. In this paper, we propose a novel visual analytics framework with three linked, purpose-designed components to evoke deeper interpretation of the fMRI data: (i) an enhanced FCN abstraction; (ii) a temporal signal viewer; and (iii) the anatomical context. Each component has been specifically designed with novel visual cues and interaction to expose the impact of uncertainties on the data. We augment this with two methods designed for comparing subjects, by using a small multiples and a marker approach. We demonstrate the enhancements enabled by our framework on three case studies of common research scenarios, using clinical schizophrenia data, which highlight the value in interpreting fMRI FCN data with an awareness of the uncertainties. Finally, we discuss our framework in the context of fMRI visual analytics and the extensibility of our approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Angulo, D. A., Schneider, C., Oliver, J. H., Charpak, N., & Hernandez, J. T. (2016). A Multi-facetted Visual Analytics Tool for Exploratory Analysis of Human Brain and Function Datasets. Frontiers in neuroinformatics, 10. Angulo, D. A., Schneider, C., Oliver, J. H., Charpak, N., & Hernandez, J. T. (2016). A Multi-facetted Visual Analytics Tool for Exploratory Analysis of Human Brain and Function Datasets. Frontiers in neuroinformatics, 10.
Zurück zum Zitat Arbabshirani, M., Castro, E., & Calhoun, V (2014). Accurate classification of schizophrenia patients based on novel resting-state fmri features. In EMBC, 6691–6694. Arbabshirani, M., Castro, E., & Calhoun, V (2014). Accurate classification of schizophrenia patients based on novel resting-state fmri features. In EMBC, 6691–6694.
Zurück zum Zitat Bach, B., Henry-Riche, N., Dwyer, T., Madhyastha, T., Fekete, J. D., & Grabowski, T. (2015). Small MultiPiles: Piling time to explore temporal patterns in dynamic networks. Computer Graphics Forum, 34(3), 31–40.CrossRef Bach, B., Henry-Riche, N., Dwyer, T., Madhyastha, T., Fekete, J. D., & Grabowski, T. (2015). Small MultiPiles: Piling time to explore temporal patterns in dynamic networks. Computer Graphics Forum, 34(3), 31–40.CrossRef
Zurück zum Zitat Bach, B., Shi, C., Heulot, N., Madhyastha, T., Grabowski, T., & Dragicevic, P. (2016). Time curves: Folding time to visualize patterns of temporal evolution in data. IEEE Transactions on Visualization and Computer Graphics, 22(1), 559–568.CrossRefPubMed Bach, B., Shi, C., Heulot, N., Madhyastha, T., Grabowski, T., & Dragicevic, P. (2016). Time curves: Folding time to visualize patterns of temporal evolution in data. IEEE Transactions on Visualization and Computer Graphics, 22(1), 559–568.CrossRefPubMed
Zurück zum Zitat Böttger, J., Schäfer, A., & Lohmann, G. (2014). Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain. IEEE Transactions on Visualization and Computer Graphics, 20(3), 471–480.CrossRefPubMed Böttger, J., Schäfer, A., & Lohmann, G. (2014). Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain. IEEE Transactions on Visualization and Computer Graphics, 20(3), 471–480.CrossRefPubMed
Zurück zum Zitat Carp, J. (2012). On the plurality of (methodological) worlds: Estimating the analytic flexibility of FMRI experiments. Frontiers in Neuroscience, 6, 149.CrossRefPubMedPubMedCentral Carp, J. (2012). On the plurality of (methodological) worlds: Estimating the analytic flexibility of FMRI experiments. Frontiers in Neuroscience, 6, 149.CrossRefPubMedPubMedCentral
Zurück zum Zitat de Ridder, M., Klein, K., & Kim, J (2015). CereVA-Visual Analysis of Functional Brain Connectivity. In IVAPP, 131–138. de Ridder, M., Klein, K., & Kim, J (2015). CereVA-Visual Analysis of Functional Brain Connectivity. In IVAPP, 131–138.
Zurück zum Zitat Eklund, A., Nichols, T., & Knutsson, H. (2016). Can parametric statistical methods be trusted for fMRI based group studies? PNAS, 113(28), 7900–7905.CrossRefPubMedPubMedCentral Eklund, A., Nichols, T., & Knutsson, H. (2016). Can parametric statistical methods be trusted for fMRI based group studies? PNAS, 113(28), 7900–7905.CrossRefPubMedPubMedCentral
Zurück zum Zitat Filippi, M. (2016). fMRI Techniques and Protocols: Springer. Filippi, M. (2016). fMRI Techniques and Protocols: Springer.
Zurück zum Zitat Filippi, M., & Filippi (2009). fMRI techniques and protocols: Springer. Filippi, M., & Filippi (2009). fMRI techniques and protocols: Springer.
Zurück zum Zitat Friston, K., Brown, H. R., Siemerkus, J., & Stephan, K. E. (2016). The dysconnection hypothesis (2016). Schizophrenia Research, 176(2), 83–94.CrossRefPubMed Friston, K., Brown, H. R., Siemerkus, J., & Stephan, K. E. (2016). The dysconnection hypothesis (2016). Schizophrenia Research, 176(2), 83–94.CrossRefPubMed
Zurück zum Zitat Fujiwara, T., Chou, J.-K., McCullough, A. M., Ranganath, C., & Ma, K.-L (2017). A visual analytics system for brain functional connectivity comparison across individuals, groups, and time points. In Pacific Visualization Symposium (PacificVis), IEEE, 2017 (pp. 250-259): IEEE. Fujiwara, T., Chou, J.-K., McCullough, A. M., Ranganath, C., & Ma, K.-L (2017). A visual analytics system for brain functional connectivity comparison across individuals, groups, and time points. In Pacific Visualization Symposium (PacificVis), IEEE, 2017 (pp. 250-259): IEEE.
Zurück zum Zitat Giraldo-Chica, M., & Woodward, N. D. (2016). Review of thalamocortical resting-state fmri studies in schizophrenia. Schizophrenia Research, 6. Giraldo-Chica, M., & Woodward, N. D. (2016). Review of thalamocortical resting-state fmri studies in schizophrenia. Schizophrenia Research, 6.
Zurück zum Zitat Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwartz, Y., Sochat, V. V., Ghosh, S. S., et al. (2016). NeuroVault. Org: A repository for sharing unthresholded statistical maps, parcellations, and atlases of the human brain. Neuroimage, 124, 1242–1244.CrossRefPubMed Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwartz, Y., Sochat, V. V., Ghosh, S. S., et al. (2016). NeuroVault. Org: A repository for sharing unthresholded statistical maps, parcellations, and atlases of the human brain. Neuroimage, 124, 1242–1244.CrossRefPubMed
Zurück zum Zitat Jezzard, P., Matthews, P., & Smith, S. (2001). Functional MRI: an introduction to methods: Oxford University Press. Jezzard, P., Matthews, P., & Smith, S. (2001). Functional MRI: an introduction to methods: Oxford University Press.
Zurück zum Zitat Jie, B., Liu, M., Jiang, X., & Zhang, D. (2016) Sub-network Based Kernels for Brain Network Classification. In Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, (622–629): ACM. Jie, B., Liu, M., Jiang, X., & Zhang, D. (2016) Sub-network Based Kernels for Brain Network Classification. In Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, (622–629): ACM.
Zurück zum Zitat Liang, M., Zhou, Y., Jiang, T., Liu, Z., Tian, L., Liu, H., et al. (2006). Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport, 17(2), 209-213. Liang, M., Zhou, Y., Jiang, T., Liu, Z., Tian, L., Liu, H., et al. (2006). Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport, 17(2), 209-213.
Zurück zum Zitat Liu, Y., Wang, K., Chunshui, Y. U., He, Y., Zhou, Y., Liang, M., et al. (2008). Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease: A review of resting-state fMRI studies. Neuropsychologia, 46(6), 1648-1656. Liu, Y., Wang, K., Chunshui, Y. U., He, Y., Zhou, Y., Liang, M., et al. (2008). Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease: A review of resting-state fMRI studies. Neuropsychologia, 46(6), 1648-1656.
Zurück zum Zitat Liu, F., Xie, B., Wang, Y., Guo, W., Fouche, J.-P., Long, Z., et al. (2015). Characterization of post-traumatic stress disorder using resting-state fMRI with a multi-level parametric classification approach. Brain Topography, 28(2), 221-237. Liu, F., Xie, B., Wang, Y., Guo, W., Fouche, J.-P., Long, Z., et al. (2015). Characterization of post-traumatic stress disorder using resting-state fMRI with a multi-level parametric classification approach. Brain Topography, 28(2), 221-237.
Zurück zum Zitat Peeters, R., & Sunaert, S. (2007). Clinical BOLD fMRI: artifacts, tips and tricks. In Clinical Functional MRI (pp. 227-249): Springer. Peeters, R., & Sunaert, S. (2007). Clinical BOLD fMRI: artifacts, tips and tricks. In Clinical Functional MRI (pp. 227-249): Springer.
Zurück zum Zitat Rashid, B., Arbabshirani, M. R., Damaraju, E., Cetin, M. S., Miller, R., Pearlson, G. D., et al. (2016). Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity. Neuroimage, 134, 645-657. Rashid, B., Arbabshirani, M. R., Damaraju, E., Cetin, M. S., Miller, R., Pearlson, G. D., et al. (2016). Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity. Neuroimage, 134, 645-657.
Zurück zum Zitat Ristovski, G., Preusser, T., Hahn, H. K., & Linsen, L. (2014). Uncertainty in medical visualization: Towards a taxonomy. Compters and Graphics, 39, 60–73.CrossRef Ristovski, G., Preusser, T., Hahn, H. K., & Linsen, L. (2014). Uncertainty in medical visualization: Towards a taxonomy. Compters and Graphics, 39, 60–73.CrossRef
Zurück zum Zitat Sarraf, S., & Tofighi, G. (2016). Classification of alzheimer's disease using fmri data and deep learning convolutional neural networks. arXiv Preprint arXiv, 1603, 08631. Sarraf, S., & Tofighi, G. (2016). Classification of alzheimer's disease using fmri data and deep learning convolutional neural networks. arXiv Preprint arXiv, 1603, 08631.
Zurück zum Zitat Sheline, Y. I., & Raichle, M. E. (2013). Resting state functional connectivity in preclinical Alzheimer’s disease. Biological Psychiatry, 74(5), 340–347.CrossRefPubMedPubMedCentral Sheline, Y. I., & Raichle, M. E. (2013). Resting state functional connectivity in preclinical Alzheimer’s disease. Biological Psychiatry, 74(5), 340–347.CrossRefPubMedPubMedCentral
Zurück zum Zitat Sporns, O. (2010). Networks of the Brain: MIT Press. Sporns, O. (2010). Networks of the Brain: MIT Press.
Zurück zum Zitat Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroschience, 17, 652–660.CrossRef Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroschience, 17, 652–660.CrossRef
Zurück zum Zitat Stevens, M. T. R., Darcy, R. C., Stroink, G., Clarke, D. B., & Beyea, S. D. (2013). Thresholds in fmri studies: Reliable for single subjects? Journal of Neuroscience Methods, 219(2), 312–323.CrossRefPubMed Stevens, M. T. R., Darcy, R. C., Stroink, G., Clarke, D. B., & Beyea, S. D. (2013). Thresholds in fmri studies: Reliable for single subjects? Journal of Neuroscience Methods, 219(2), 312–323.CrossRefPubMed
Zurück zum Zitat Swenson, R. (2006). Chapter 11: The Cerebral Cortex. In Review of Clinical and Functional Neuroscience (Vol. 1): Dartmouth Medical School. Swenson, R. (2006). Chapter 11: The Cerebral Cortex. In Review of Clinical and Functional Neuroscience (Vol. 1): Dartmouth Medical School.
Zurück zum Zitat Wang, S., Zhang, Y., Lv, L., Wu, R., Fan, X., Zhao, J., et al. (2017). Abnormal regional homogeneity as a potential imaging biomarker for adolescent-onset schizophrenia: A resting-state fMRI study and support vector machine analysis. Schizophrenia Research. Wang, S., Zhang, Y., Lv, L., Wu, R., Fan, X., Zhao, J., et al. (2017). Abnormal regional homogeneity as a potential imaging biomarker for adolescent-onset schizophrenia: A resting-state fMRI study and support vector machine analysis. Schizophrenia Research.
Zurück zum Zitat Woodward, N. D., Karbasforoushan, M. S., & Heckers, S. (2012). Thalamocortical dysconnectivity in schizophrenia. American Journal of Psychiatry, 169(10). Woodward, N. D., Karbasforoushan, M. S., & Heckers, S. (2012). Thalamocortical dysconnectivity in schizophrenia. American Journal of Psychiatry, 169(10).
Zurück zum Zitat Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage, 22(1), 394–400.CrossRefPubMed Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage, 22(1), 394–400.CrossRefPubMed
Zurück zum Zitat Zeng, H., Ramos, C. G., Nair, V. A., Hu, Y., Liao, J., La, C., et al. (2015). Regional homogeneity (ReHo) changes in new onset versus chronic benign epilepsy of childhood with centrotemporal spikes (BECTS): A resting state fMRI study. Epilepsy Research, 116, 79-85. Zeng, H., Ramos, C. G., Nair, V. A., Hu, Y., Liao, J., La, C., et al. (2015). Regional homogeneity (ReHo) changes in new onset versus chronic benign epilepsy of childhood with centrotemporal spikes (BECTS): A resting state fMRI study. Epilepsy Research, 116, 79-85.
Metadaten
Titel
An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity
verfasst von
Michael de Ridder
Karsten Klein
Jean Yang
Pengyi Yang
Jim Lagopoulos
Ian Hickie
Max Bennett
Jinman Kim
Publikationsdatum
11.08.2018
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 2/2019
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-018-9395-8

Weitere Artikel der Ausgabe 2/2019

Neuroinformatics 2/2019 Zur Ausgabe