Skip to main content
Erschienen in: Journal of Computational Electronics 1/2016

18.08.2015

Analog implementation of neuron–astrocyte interaction in tripartite synapse

verfasst von: Mahnaz Ranjbar, Mahmood Amiri

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neural synchronization is considered as an important mechanism for information processing. In addition, recent neurophysiological findings approve that astrocytes adjust the synaptic transmission of neural networks. Motivated by these observations, we develop an analog neuromorphic circuit to implement the tripartite synapse. To model the dynamics of the intracellular calcium waves produced by the astrocytes, we utilize a simplified model which considers the key physiological pathways of neuron–astrocyte communication. Next, using an astrocyte analog circuit, a tripartite synapse circuit is constructed by connecting two modified differential pair integrator neurons and one astrocyte circuits. It is designed and simulated using HSPICE simulator in \(0.35\,\upmu \hbox {m}\) standard CMOS technology. The simulation results of the tripartite synapse circuit, demonstrate that astrocyte circuit plays a crucial role in neuronal firing synchronicity from hardware point of view. In this way, astrocyte–neuron collaboration leads to the emergence of synchronous/asynchronous patterns in neural responses. Therefore, it makes possible to have a new circuit in which astrocyte actively contributes in neural information processing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Linne, M.L., Jalonen, T.O.: Astrocyte–neuron interactions: from experimental research-based models to translational medicine. Prog. Mol. Biol. Transl. Sci. 123, 191 (2014)CrossRef Linne, M.L., Jalonen, T.O.: Astrocyte–neuron interactions: from experimental research-based models to translational medicine. Prog. Mol. Biol. Transl. Sci. 123, 191 (2014)CrossRef
2.
Zurück zum Zitat Indiveri, G., et al.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 1 (2011) Indiveri, G., et al.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 1 (2011)
3.
Zurück zum Zitat Bartolozzi, C., Indiveri, G.: Synaptic dynamics in analog VLSI. Neural Comput. 19(10), 2581–2603 (2007)CrossRefMATH Bartolozzi, C., Indiveri, G.: Synaptic dynamics in analog VLSI. Neural Comput. 19(10), 2581–2603 (2007)CrossRefMATH
4.
Zurück zum Zitat Kuga, N., Sasaki, T., Takahara, Y., Matsuki, N., Ikegaya, Y.: Large-scale calcium waves traveling through astrocytic networks in vivo. J. Neurosci. 31(7), 2607–2614 (2011)CrossRef Kuga, N., Sasaki, T., Takahara, Y., Matsuki, N., Ikegaya, Y.: Large-scale calcium waves traveling through astrocytic networks in vivo. J. Neurosci. 31(7), 2607–2614 (2011)CrossRef
5.
Zurück zum Zitat Papa, M., De Luca, C., Petta, F., Alberghina, L., Cirillo, G.: Astrocyte-neuron inter play in maladaptive plasticity. Neurosci. Biobehav. Rev. 42, 35–54 (2014)CrossRef Papa, M., De Luca, C., Petta, F., Alberghina, L., Cirillo, G.: Astrocyte-neuron inter play in maladaptive plasticity. Neurosci. Biobehav. Rev. 42, 35–54 (2014)CrossRef
6.
Zurück zum Zitat Dallérac, G., Chever, O., Rouach, N.: How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front. Cell. Neurosci. 7, 159 (2013)CrossRef Dallérac, G., Chever, O., Rouach, N.: How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front. Cell. Neurosci. 7, 159 (2013)CrossRef
7.
Zurück zum Zitat Kanski, R., van Strien, M.E., van Tijn, P., Hol, E.M.: A star is born: new insights into the mechanism of astrogenesis. Cell. Mol. Life Sci. 71(3), 433–447 (2014)CrossRef Kanski, R., van Strien, M.E., van Tijn, P., Hol, E.M.: A star is born: new insights into the mechanism of astrogenesis. Cell. Mol. Life Sci. 71(3), 433–447 (2014)CrossRef
8.
Zurück zum Zitat Molofsky, A.V., Krenick, R., Ullian, E., Tsai, H.H., Deneen, B., Richardson, W.D., Barres, B.A., Rowitch, D.H.: Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26(9), 891–907 (2012)CrossRef Molofsky, A.V., Krenick, R., Ullian, E., Tsai, H.H., Deneen, B., Richardson, W.D., Barres, B.A., Rowitch, D.H.: Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26(9), 891–907 (2012)CrossRef
10.
Zurück zum Zitat Clarke, L.E., Barres, B.A.: Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14(5), 311–321 (2013)CrossRef Clarke, L.E., Barres, B.A.: Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14(5), 311–321 (2013)CrossRef
11.
Zurück zum Zitat Fellin, T.: Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J. Neurochem. 108(3), 533–544 (2009)CrossRef Fellin, T.: Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J. Neurochem. 108(3), 533–544 (2009)CrossRef
12.
Zurück zum Zitat Schafer, D.P., Lehrman, E.K., Kautzman, A.G., Koyama, R., Mardinly, A.R., Yamasaki, R., Ransohoff, R.M., Greenberg, M.E., Barres, B.A., Stevens, B.: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4), 691–705 (2012)CrossRef Schafer, D.P., Lehrman, E.K., Kautzman, A.G., Koyama, R., Mardinly, A.R., Yamasaki, R., Ransohoff, R.M., Greenberg, M.E., Barres, B.A., Stevens, B.: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4), 691–705 (2012)CrossRef
13.
Zurück zum Zitat Amiri, M., Bahrami, F., Janahmadi, M.: Functional contributions of astrocytes in synchronization of a neuronal network model. J. Theor. Biol. 292, 60–70 (2012)MathSciNetCrossRefMATH Amiri, M., Bahrami, F., Janahmadi, M.: Functional contributions of astrocytes in synchronization of a neuronal network model. J. Theor. Biol. 292, 60–70 (2012)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Amiri, M., Bahrami, F., Janahmadi, M.: Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J. Comput. Neurosci. 33(2), 285–299 (2012)MathSciNetCrossRef Amiri, M., Bahrami, F., Janahmadi, M.: Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J. Comput. Neurosci. 33(2), 285–299 (2012)MathSciNetCrossRef
15.
Zurück zum Zitat Amiri, M., Hosseinmardi, N., Bahrami, F., Janahmadi, M.: Astrocyte–neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on odeling and experiments. J. Comput. Neurosci. 34(3), 489–504 (2013)MathSciNetCrossRef Amiri, M., Hosseinmardi, N., Bahrami, F., Janahmadi, M.: Astrocyte–neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on odeling and experiments. J. Comput. Neurosci. 34(3), 489–504 (2013)MathSciNetCrossRef
16.
Zurück zum Zitat Nazari, S., Faez, K., Karami, E., Amiri, M.: A digital neurmorphic circuit for a simplified model of astrocyte dynamics. Neurosci. Lett. 582, 21–26 (2014)CrossRef Nazari, S., Faez, K., Karami, E., Amiri, M.: A digital neurmorphic circuit for a simplified model of astrocyte dynamics. Neurosci. Lett. 582, 21–26 (2014)CrossRef
17.
Zurück zum Zitat Joshi, J., Zhang, J., Wang, C., Hsu, C. C., Parker, A.C., Zhou, C., Ravishankar, U.: A biomimetic fabricated carbon nanotube synapse for prosthetic applications. In: Life Science Systems and Applications Workshop (LiSSA), pp. 139–142 (2011) Joshi, J., Zhang, J., Wang, C., Hsu, C. C., Parker, A.C., Zhou, C., Ravishankar, U.: A biomimetic fabricated carbon nanotube synapse for prosthetic applications. In: Life Science Systems and Applications Workshop (LiSSA), pp. 139–142 (2011)
18.
Zurück zum Zitat Nazari, S., Faez, K., Amiri, M., Karami, E.: A novel digital implementation of neuron–astrocyte interactions. J. Comput. Electron. 14, 227–239 (2015)CrossRef Nazari, S., Faez, K., Amiri, M., Karami, E.: A novel digital implementation of neuron–astrocyte interactions. J. Comput. Electron. 14, 227–239 (2015)CrossRef
19.
20.
Zurück zum Zitat Nazari, S., Faez, K., Amiri, M., Karami, E.: A digital implementation of neuron–astrocyte interaction for neuromorphic applications. Neural Netw. 66, 79–90 (2015)CrossRef Nazari, S., Faez, K., Amiri, M., Karami, E.: A digital implementation of neuron–astrocyte interaction for neuromorphic applications. Neural Netw. 66, 79–90 (2015)CrossRef
21.
Zurück zum Zitat Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., Linares-Barranco, B.: STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front. Neurosci. 7, 2 (2013)CrossRef Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., Linares-Barranco, B.: STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front. Neurosci. 7, 2 (2013)CrossRef
22.
Zurück zum Zitat Davies, S., Galluppi, F., Rast, A.D., Furber, S.B.: A forecast-based STDP rule suitable for neuromorphic implementation. Neural Netw. 32, 3–14 (2012)CrossRef Davies, S., Galluppi, F., Rast, A.D., Furber, S.B.: A forecast-based STDP rule suitable for neuromorphic implementation. Neural Netw. 32, 3–14 (2012)CrossRef
23.
Zurück zum Zitat Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1), 239–255 (2010)CrossRef Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1), 239–255 (2010)CrossRef
24.
Zurück zum Zitat Brink, S., Nease, S., Hasler, P.: Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit. Neural Netw. 45, 39–49 (2013)CrossRef Brink, S., Nease, S., Hasler, P.: Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit. Neural Netw. 45, 39–49 (2013)CrossRef
25.
Zurück zum Zitat Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., Rasmussen, D.: A large-scale model of the functioning brain. Science 338(6111), 1202–1205 (2012)CrossRef Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., Rasmussen, D.: A large-scale model of the functioning brain. Science 338(6111), 1202–1205 (2012)CrossRef
26.
Zurück zum Zitat Chicca, E., Stefanini, F., Bartolozzi, C., Indiveri, G.: Neuromorphic electronic circuits for building autonomous cognitive systems. In: Proceedings of the IEEE 102.9, pp. 1367–1388 (2014) Chicca, E., Stefanini, F., Bartolozzi, C., Indiveri, G.: Neuromorphic electronic circuits for building autonomous cognitive systems. In: Proceedings of the IEEE 102.9, pp. 1367–1388 (2014)
27.
Zurück zum Zitat Cassidy, A.S., Georgiou, J., Andreou, A.G.: Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization. Neural Netw. 45, 4–26 (2013)CrossRef Cassidy, A.S., Georgiou, J., Andreou, A.G.: Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization. Neural Netw. 45, 4–26 (2013)CrossRef
28.
Zurück zum Zitat Painkras, E., Plana, L.A., Garside, J., Temple, S., Galluppi, F., Patterson, C., Lester, D.R., Brown, A.D., Furber, S.B.: SpiNNaker: a 1-W 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State Circuit 48(8), 1943–1953 (2013) Painkras, E., Plana, L.A., Garside, J., Temple, S., Galluppi, F., Patterson, C., Lester, D.R., Brown, A.D., Furber, S.B.: SpiNNaker: a 1-W 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State Circuit 48(8), 1943–1953 (2013)
29.
Zurück zum Zitat Piri, M., Amiri, M., Amiri, M.: A bio-inspired stimulator to desynchronize epileptic cortical population models: a digital implementation framework. Neural Netw. 67, 74–83 (2015)CrossRef Piri, M., Amiri, M., Amiri, M.: A bio-inspired stimulator to desynchronize epileptic cortical population models: a digital implementation framework. Neural Netw. 67, 74–83 (2015)CrossRef
30.
Zurück zum Zitat Amiri, M., Montaseri, G., Bahrami, F.: A phase plane analysis of neuron–astrocyte interactions. Neural Netw. 44, 157–165 (2013) Amiri, M., Montaseri, G., Bahrami, F.: A phase plane analysis of neuron–astrocyte interactions. Neural Netw. 44, 157–165 (2013)
31.
Zurück zum Zitat Montaseri, G., Yazdanpanah, M. J., Amiri, M.: Astrocyte-inspired controller design for desynchronization of two coupled limit-cycle oscillators. In: Nature and Biologically Inspired Computing (NaBIC), Third World Congress on IEEE, pp. 195–200 (2011) Montaseri, G., Yazdanpanah, M. J., Amiri, M.: Astrocyte-inspired controller design for desynchronization of two coupled limit-cycle oscillators. In: Nature and Biologically Inspired Computing (NaBIC), Third World Congress on IEEE, pp. 195–200 (2011)
32.
Zurück zum Zitat Postnov, D.E., Koreshkov, R.N., Brazhe, N.A., Brazhe, A.R., Sosnovtseva, O.V.: Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J. Biol. Phys. 35(4), 425–445 (2009)CrossRef Postnov, D.E., Koreshkov, R.N., Brazhe, N.A., Brazhe, A.R., Sosnovtseva, O.V.: Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J. Biol. Phys. 35(4), 425–445 (2009)CrossRef
33.
Zurück zum Zitat Cassidy, A.S., Georgiou, J., Andreou, A.G.: Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization. Neural Netw. 45, 4–26 (2013)CrossRef Cassidy, A.S., Georgiou, J., Andreou, A.G.: Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization. Neural Netw. 45, 4–26 (2013)CrossRef
34.
Zurück zum Zitat Ambroise, M., Levi, T., Joucla, S., Yvert, B., Saïghi, S.: Real-time biomimetic central pattern generators in an FPGA for hybrid experiments. Front. Neurosci. 7, 215 (2013)CrossRef Ambroise, M., Levi, T., Joucla, S., Yvert, B., Saïghi, S.: Real-time biomimetic central pattern generators in an FPGA for hybrid experiments. Front. Neurosci. 7, 215 (2013)CrossRef
35.
Zurück zum Zitat Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybern. 99(4–5), 335–347 (2008)MathSciNetCrossRefMATH Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybern. 99(4–5), 335–347 (2008)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)CrossRef Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)CrossRef
37.
Zurück zum Zitat Giugliano, M.: Calcium waves in astrocyte networks: theory and experiments. Front. Neurosci. 3(2), 160–161 (2009)CrossRef Giugliano, M.: Calcium waves in astrocyte networks: theory and experiments. Front. Neurosci. 3(2), 160–161 (2009)CrossRef
38.
Zurück zum Zitat Fellin, T., Pascual, O., Haydon, P.G.: Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21(3), 208–215 (2006)CrossRef Fellin, T., Pascual, O., Haydon, P.G.: Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21(3), 208–215 (2006)CrossRef
39.
Zurück zum Zitat Newman, E.A.: New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26(10), 536–542 (2003)CrossRef Newman, E.A.: New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26(10), 536–542 (2003)CrossRef
40.
Zurück zum Zitat Clarke, Laura E., Attwell, David: An astrocyte TRP switch for inhibition. Nat. Neurosci. 15(1), 3–4 (2012)CrossRef Clarke, Laura E., Attwell, David: An astrocyte TRP switch for inhibition. Nat. Neurosci. 15(1), 3–4 (2012)CrossRef
41.
Zurück zum Zitat Amiri, M., Bahrami, F., Janahmadi, M.: Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput. Appl. 20(8), 1131–1139 (2011)CrossRef Amiri, M., Bahrami, F., Janahmadi, M.: Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput. Appl. 20(8), 1131–1139 (2011)CrossRef
42.
Zurück zum Zitat Amiri, M., Bahrami, F., Janahmadi, M.: On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci. Res. 72(2), 172–180 (2012)MathSciNetCrossRefMATH Amiri, M., Bahrami, F., Janahmadi, M.: On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci. Res. 72(2), 172–180 (2012)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Amiri, M., Montaseri, G., Bahrami, F.: On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol. Cybern. 105(2), 153–166 (2011)MathSciNetCrossRefMATH Amiri, M., Montaseri, G., Bahrami, F.: On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol. Cybern. 105(2), 153–166 (2011)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Terman, D., Rubin, J.E., Yew, A.C., Wilson, C.J.: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22(7), 2963–2976 (2002) Terman, D., Rubin, J.E., Yew, A.C., Wilson, C.J.: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22(7), 2963–2976 (2002)
45.
Zurück zum Zitat Smith, K.: Neuroscience: settling the great glia debate. Nature 468, 160–162 (2010) Smith, K.: Neuroscience: settling the great glia debate. Nature 468, 160–162 (2010)
46.
Zurück zum Zitat Perea, G., Araque, A.: Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317(5841), 1083–1086 (2007)CrossRef Perea, G., Araque, A.: Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317(5841), 1083–1086 (2007)CrossRef
47.
Zurück zum Zitat Ranjbar, M., Amiri, M.: A modified DPI-neuron with various biological firing patterns. In: 6th Iranian Conference on Electrical and Electronics Engineering (ICEEE), pp. 2589–2592 (2014) Ranjbar, M., Amiri, M.: A modified DPI-neuron with various biological firing patterns. In: 6th Iranian Conference on Electrical and Electronics Engineering (ICEEE), pp. 2589–2592 (2014)
48.
Zurück zum Zitat Geiger, Randall L., Allen, Phillip E., Strader, Noel R.: VLSI Design Techniques for Analog and Digital Circuits, vol. 90. McGraw-Hill, New York (1990) Geiger, Randall L., Allen, Phillip E., Strader, Noel R.: VLSI Design Techniques for Analog and Digital Circuits, vol. 90. McGraw-Hill, New York (1990)
49.
Zurück zum Zitat Silchenko, A.N., Tass, P.A.: Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol. Cybern. 98(1), 61–74 (2008)CrossRefMATH Silchenko, A.N., Tass, P.A.: Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol. Cybern. 98(1), 61–74 (2008)CrossRefMATH
50.
Zurück zum Zitat Ackert, J.M., Wu, S.H., Lee, J.C., Abrams, J., Hu, E.H., Perlman, I., Bloom-field, S.A.: Light-induced changes in spike synchronization between coupled ON direction selective ganglion cells in themam-malian retina. J. Neurosci. 26, 4206–4215 (2006)CrossRef Ackert, J.M., Wu, S.H., Lee, J.C., Abrams, J., Hu, E.H., Perlman, I., Bloom-field, S.A.: Light-induced changes in spike synchronization between coupled ON direction selective ganglion cells in themam-malian retina. J. Neurosci. 26, 4206–4215 (2006)CrossRef
51.
Zurück zum Zitat Benda, J., Longtin, A., Maler, L.: A synchronization-desynchronization code for natural communication signals. Neuron 52, 347–358 (2006)CrossRef Benda, J., Longtin, A., Maler, L.: A synchronization-desynchronization code for natural communication signals. Neuron 52, 347–358 (2006)CrossRef
52.
Zurück zum Zitat Amiri, M., Davoodi, E., Bahrami, F., Raza, M.: Bifurcation analysis of the Poincaré map function of intracranial EEG signals in temporal lobe epilepsy patients. Math. Comput. Simul. 81, 2471–2491 (2011)CrossRefMATH Amiri, M., Davoodi, E., Bahrami, F., Raza, M.: Bifurcation analysis of the Poincaré map function of intracranial EEG signals in temporal lobe epilepsy patients. Math. Comput. Simul. 81, 2471–2491 (2011)CrossRefMATH
Metadaten
Titel
Analog implementation of neuron–astrocyte interaction in tripartite synapse
verfasst von
Mahnaz Ranjbar
Mahmood Amiri
Publikationsdatum
18.08.2015
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-015-0727-8

Weitere Artikel der Ausgabe 1/2016

Journal of Computational Electronics 1/2016 Zur Ausgabe

Neuer Inhalt