Skip to main content
Erschienen in: Photonic Network Communications 3/2020

14.03.2020 | Original Paper

Analysis and optimization of uniform FBG structure for sensing and communication applications

verfasst von: M. Divya shree, A. Sangeetha, Prabu Krishnan

Erschienen in: Photonic Network Communications | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A uniform fiber Bragg grating sensor is sketched and inspected by the finite-difference time-domain method in furtherance of obtaining ultimate transmission and reflection spectra by optimizing the FBG parameters like refractive index, grating height, grating width, wafer width, wafer length. The maximum transmission power spectrum is achieved as − 7 dB for the refractive index of 3.005, and the maximum reflection spectra are obtained as 6 dB for the grating height of 1 μm which is enhanced nine times than the precedent work. The proposed FBG is a simple, light-weight, low-cost uniform structure, and it offers high reflectivity and ease of handling. Therefore, it is highly useful in sensing and communication applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hill, K.O., Fujii, Y., Johnson, D.C., Kawasaki, B.S.: Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32, 647–649 (1978)CrossRef Hill, K.O., Fujii, Y., Johnson, D.C., Kawasaki, B.S.: Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32, 647–649 (1978)CrossRef
2.
Zurück zum Zitat Meltz, G., Morey, W.W., Glenn, W.H.: Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14, 823–825 (1989)CrossRef Meltz, G., Morey, W.W., Glenn, W.H.: Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14, 823–825 (1989)CrossRef
3.
Zurück zum Zitat Ding, W., Andrews, S.R., Birks, T.A., Maier, S.A.: Modal coupling in fiber tapers decorated with metallic surface gratings. Opt. Lett. 31(17), 2556–2558 (2006)CrossRef Ding, W., Andrews, S.R., Birks, T.A., Maier, S.A.: Modal coupling in fiber tapers decorated with metallic surface gratings. Opt. Lett. 31(17), 2556–2558 (2006)CrossRef
4.
Zurück zum Zitat Ding, W., Andrews, S.R., Maier, S.A.: Surface corrugation Bragg gratings on optical fiber tapers created via plasma etch postprocessing. Opt. Lett. 32(17), 2499–2501 (2007)CrossRef Ding, W., Andrews, S.R., Maier, S.A.: Surface corrugation Bragg gratings on optical fiber tapers created via plasma etch postprocessing. Opt. Lett. 32(17), 2499–2501 (2007)CrossRef
5.
Zurück zum Zitat Fang, X., Liao, C.R., Wang, D.N.: Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Opt. Lett. 35(7), 1007–1009 (2010)CrossRef Fang, X., Liao, C.R., Wang, D.N.: Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Opt. Lett. 35(7), 1007–1009 (2010)CrossRef
6.
Zurück zum Zitat Ahmad, R., Baker, C., Rochette, M.: Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires. Opt. Lett. 36(15), 2886–2888 (2011)CrossRef Ahmad, R., Baker, C., Rochette, M.: Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires. Opt. Lett. 36(15), 2886–2888 (2011)CrossRef
7.
Zurück zum Zitat Liang, W., Huang, Y.Y., Xu, Y., Lee, R.K., Yariv, A.: Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 86(15), 151122 (2005)CrossRef Liang, W., Huang, Y.Y., Xu, Y., Lee, R.K., Yariv, A.: Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 86(15), 151122 (2005)CrossRef
8.
Zurück zum Zitat Iadicicco, A., Cusano, A., Cutolo, A., Bernini, R., Giordano, M.: Thinned fiber Bragg gratings as high sensitivity refractive index sensor. IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004)CrossRef Iadicicco, A., Cusano, A., Cutolo, A., Bernini, R., Giordano, M.: Thinned fiber Bragg gratings as high sensitivity refractive index sensor. IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004)CrossRef
9.
Zurück zum Zitat Zhang, Y., Lin, B., Tjin, S.C., Zhang, H., Wang, G.H., Shum, P., Zhang, X.L.: Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating. Opt. Express 18(25), 26345–26350 (2010)CrossRef Zhang, Y., Lin, B., Tjin, S.C., Zhang, H., Wang, G.H., Shum, P., Zhang, X.L.: Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating. Opt. Express 18(25), 26345–26350 (2010)CrossRef
10.
Zurück zum Zitat Chung, K.M., Liu, Z., Lu, C., Tam, H.Y.: Single reflective mode fiber Bragg grating in multimode microfiber. IEEE Photon. J. IEEE 4(2), 437–442 (2012)CrossRef Chung, K.M., Liu, Z., Lu, C., Tam, H.Y.: Single reflective mode fiber Bragg grating in multimode microfiber. IEEE Photon. J. IEEE 4(2), 437–442 (2012)CrossRef
11.
Zurück zum Zitat Ran, Y., Tan, Y.-N., Sun, L.-P., Gao, S., Li, J., Jin, L., Guan, B.-O.: 193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing. Opt. Express 19(19), 18577–18583 (2011)CrossRef Ran, Y., Tan, Y.-N., Sun, L.-P., Gao, S., Li, J., Jin, L., Guan, B.-O.: 193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing. Opt. Express 19(19), 18577–18583 (2011)CrossRef
12.
Zurück zum Zitat Zhao, P., Li, Y.H., Zhang, J.H., Shi, L., Zhang, X.L.: Nanohole induced microfiber Bragg gratings. Opt. Express 20(27), 28625–28630 (2012)CrossRef Zhao, P., Li, Y.H., Zhang, J.H., Shi, L., Zhang, X.L.: Nanohole induced microfiber Bragg gratings. Opt. Express 20(27), 28625–28630 (2012)CrossRef
13.
Zurück zum Zitat Nayak, K.P., Hakuta, K.: Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique. Opt. Express 21(2), 2480–2490 (2013)CrossRef Nayak, K.P., Hakuta, K.: Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique. Opt. Express 21(2), 2480–2490 (2013)CrossRef
14.
Zurück zum Zitat Ding, M., Zervas, M.N., Brambilla, G.: A compact broadband microfiber Bragg grating. Opt. Express 19(16), 15621–15626 (2011)CrossRef Ding, M., Zervas, M.N., Brambilla, G.: A compact broadband microfiber Bragg grating. Opt. Express 19(16), 15621–15626 (2011)CrossRef
15.
Zurück zum Zitat Ding, M., Wang, P., Lee, T., Brambilla, G.: A microfiber cavity with minimal-volume confinement. Appl. Phys. Lett. 99(5), 051105 (2011)CrossRef Ding, M., Wang, P., Lee, T., Brambilla, G.: A microfiber cavity with minimal-volume confinement. Appl. Phys. Lett. 99(5), 051105 (2011)CrossRef
16.
Zurück zum Zitat Kou, J.-L., Qiu, S.-J., Xu, F., Lu, Y.-Q., Yuan, Y., Zhao, G.: Miniaturized metal-dielectric-hybrid tapered fiber tip grating for refractive index sensing. IEEE Photon. Technol. Lett. 23(22), 1712–1714 (2011)CrossRef Kou, J.-L., Qiu, S.-J., Xu, F., Lu, Y.-Q., Yuan, Y., Zhao, G.: Miniaturized metal-dielectric-hybrid tapered fiber tip grating for refractive index sensing. IEEE Photon. Technol. Lett. 23(22), 1712–1714 (2011)CrossRef
17.
Zurück zum Zitat Haines, D.E.: Determinants of lesion size during radiofrequency catheter ablation: the role of electrode-tissue contact pressure and duration of energy delivery. J. Cariovasc. Electrophysiol. 2, 509–515 (1991)CrossRef Haines, D.E.: Determinants of lesion size during radiofrequency catheter ablation: the role of electrode-tissue contact pressure and duration of energy delivery. J. Cariovasc. Electrophysiol. 2, 509–515 (1991)CrossRef
19.
Zurück zum Zitat Saccomandi, P., Schena, E., Oddo, C.M., Zollo, L., Silvestri, S., Guglielmelli, E.: Microfabricated tactile sensors for biomedical applications: a review. Biosensors 4, 422–448 (2014)CrossRef Saccomandi, P., Schena, E., Oddo, C.M., Zollo, L., Silvestri, S., Guglielmelli, E.: Microfabricated tactile sensors for biomedical applications: a review. Biosensors 4, 422–448 (2014)CrossRef
20.
Zurück zum Zitat Rao, Y.J., Webb, D.J., Jackson, D.A., Zhang, L., Bennion, I.: Optical in-fiber Bragg grating sensor systems for medical applications. J. Biomed. Opt. 3, 38–44 (1998)CrossRef Rao, Y.J., Webb, D.J., Jackson, D.A., Zhang, L., Bennion, I.: Optical in-fiber Bragg grating sensor systems for medical applications. J. Biomed. Opt. 3, 38–44 (1998)CrossRef
21.
Zurück zum Zitat Saccomandi, P., Schena, E., Caponero, M.A., di Matteo, F.M., Martino, M., Pandolfi, M., Silvestri, S.: Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas. IEEE Trans. Biomed. Eng. 59, 2958–2964 (2012)CrossRef Saccomandi, P., Schena, E., Caponero, M.A., di Matteo, F.M., Martino, M., Pandolfi, M., Silvestri, S.: Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas. IEEE Trans. Biomed. Eng. 59, 2958–2964 (2012)CrossRef
22.
Zurück zum Zitat Al-Fakih, E., Abu Osman, N.A., Mahamd Adikan, F.R.: The use of fiber Bragg grating sensors in biomechanics and rehabilitation applications: the state-of-the-art and ongoing research topics. Sensors 12, 12890–12926 (2012)CrossRef Al-Fakih, E., Abu Osman, N.A., Mahamd Adikan, F.R.: The use of fiber Bragg grating sensors in biomechanics and rehabilitation applications: the state-of-the-art and ongoing research topics. Sensors 12, 12890–12926 (2012)CrossRef
23.
Zurück zum Zitat Tjin, S.C., Tan, Y.K., Yow, M., Lam, Y.Z., Hao, J.: Recording compliance of dental splint use in obstructive sleep apnoea patients by force and temperature modeling. Med. Biol. Eng. Comput. 39, 182–184 (2001)CrossRef Tjin, S.C., Tan, Y.K., Yow, M., Lam, Y.Z., Hao, J.: Recording compliance of dental splint use in obstructive sleep apnoea patients by force and temperature modeling. Med. Biol. Eng. Comput. 39, 182–184 (2001)CrossRef
25.
Zurück zum Zitat Hao, J.Z., Tan, K.M., Tjin, S.C., Liaw, C.Y., Roy Chaudhuri, P., Cuo, X., Lu, C.: Design of a foot-pressure monitoring transducer for diabetic patients based on FBG sensors. In: Proceedings of the LEOS, the 16th Annual Meeting of the IEEE, Tucson, AZ, USA, 27–30 October 2003, pp. 23–24 (2003) Hao, J.Z., Tan, K.M., Tjin, S.C., Liaw, C.Y., Roy Chaudhuri, P., Cuo, X., Lu, C.: Design of a foot-pressure monitoring transducer for diabetic patients based on FBG sensors. In: Proceedings of the LEOS, the 16th Annual Meeting of the IEEE, Tucson, AZ, USA, 27–30 October 2003, pp. 23–24 (2003)
26.
Zurück zum Zitat Obaton, A.F., Laffont, G., Wang, C., Allard, A., Ferdinand, P.: Tilted fibre Bragg gratings and phase sensitive-optical low coherence interferometry for refractometry and liquid level sensing. Sens. Actuators A 189, 451–458 (2013)CrossRef Obaton, A.F., Laffont, G., Wang, C., Allard, A., Ferdinand, P.: Tilted fibre Bragg gratings and phase sensitive-optical low coherence interferometry for refractometry and liquid level sensing. Sens. Actuators A 189, 451–458 (2013)CrossRef
27.
Zurück zum Zitat Guan, B.O., Li, J., Jin, L., Ran, Y.: Fiber Bragg gratings in optical microfibers. Opt. Fiber Technol. 19(6), 80–93 (2013)CrossRef Guan, B.O., Li, J., Jin, L., Ran, Y.: Fiber Bragg gratings in optical microfibers. Opt. Fiber Technol. 19(6), 80–93 (2013)CrossRef
28.
Zurück zum Zitat Yang, Y., Liu, X., Zhang, X., Jin, W., Yang, M.: A Gap FBG and its application in tunable narrow linewidth fibre laser. Opt. Laser Technol. 56, 114–118 (2014)CrossRef Yang, Y., Liu, X., Zhang, X., Jin, W., Yang, M.: A Gap FBG and its application in tunable narrow linewidth fibre laser. Opt. Laser Technol. 56, 114–118 (2014)CrossRef
29.
Zurück zum Zitat Qu, S., Jin, T., Chi, H., Tong, G., Ren, F., Zha, X.: An optoelectronic oscillator using an FBG and an FBG-based Fabry–Perot filter. Opt. Commun. 342, 141–143 (2015)CrossRef Qu, S., Jin, T., Chi, H., Tong, G., Ren, F., Zha, X.: An optoelectronic oscillator using an FBG and an FBG-based Fabry–Perot filter. Opt. Commun. 342, 141–143 (2015)CrossRef
30.
Zurück zum Zitat Li, X.-X., Ren, W.-X., Bi, K.-M.: FBG force-testing ring for bridge cable force monitoring and temperature compensation. Sens. Actuators A 223, 105–113 (2015)CrossRef Li, X.-X., Ren, W.-X., Bi, K.-M.: FBG force-testing ring for bridge cable force monitoring and temperature compensation. Sens. Actuators A 223, 105–113 (2015)CrossRef
31.
Zurück zum Zitat Yang, H.Z., Ali, M.M., Rajibul, M.: Cladless few mode fiber grating sensor for simultaneous refractive index and temperature measurement. Sens. Actuators A 228, 62–68 (2015)CrossRef Yang, H.Z., Ali, M.M., Rajibul, M.: Cladless few mode fiber grating sensor for simultaneous refractive index and temperature measurement. Sens. Actuators A 228, 62–68 (2015)CrossRef
32.
Zurück zum Zitat Wang, J., Hu, B., Li, W., Song, G., Jiang, L., Liu, T.: Design and application of fiber Bragg grating (FBG) geophone for higher sensitivity and wider frequency range. Measurement 79, 228–235 (2016)CrossRef Wang, J., Hu, B., Li, W., Song, G., Jiang, L., Liu, T.: Design and application of fiber Bragg grating (FBG) geophone for higher sensitivity and wider frequency range. Measurement 79, 228–235 (2016)CrossRef
33.
Zurück zum Zitat You, R., Liang, R., Gangbing, S.: A novel fiber Bragg grating (FBG) soil strain sensor. Measurement 139, 85–91 (2019)CrossRef You, R., Liang, R., Gangbing, S.: A novel fiber Bragg grating (FBG) soil strain sensor. Measurement 139, 85–91 (2019)CrossRef
34.
Zurück zum Zitat Xu, L., Liu, N., Ge, J., Wang, X., Fok, M. P.: Stretchable fiber-Bragg-grating-based sensor. Opt. Lett. 43(11), 2503–2506 (2018)CrossRef Xu, L., Liu, N., Ge, J., Wang, X., Fok, M. P.: Stretchable fiber-Bragg-grating-based sensor. Opt. Lett. 43(11), 2503–2506 (2018)CrossRef
35.
Zurück zum Zitat Zhang, W., Zhang, M., Lan, Y., Zhao, Y., Dai, W.: Detection of crack locations in aluminum alloy structures using FBG sensors. Sensors 20(2), 347 (2020)CrossRef Zhang, W., Zhang, M., Lan, Y., Zhao, Y., Dai, W.: Detection of crack locations in aluminum alloy structures using FBG sensors. Sensors 20(2), 347 (2020)CrossRef
36.
Zurück zum Zitat Cao, D., Fang, H., Wang, F., Zhu, H., Sun, M.: A fiber bragg-grating-based miniature sensor for the fast detection of soil moisture profiles in highway slopes and subgrades. Sensors 18(12), 4431 (2018)CrossRef Cao, D., Fang, H., Wang, F., Zhu, H., Sun, M.: A fiber bragg-grating-based miniature sensor for the fast detection of soil moisture profiles in highway slopes and subgrades. Sensors 18(12), 4431 (2018)CrossRef
37.
Zurück zum Zitat Hoffman, J., Waters, D. H., Khadka, S., Kumosa, M. S.: Shape sensing of polymer core composite electrical transmission lines using FBG sensors. IEEE Trans. Instrum. Meas. 69(1), 249–257 (2019)CrossRef Hoffman, J., Waters, D. H., Khadka, S., Kumosa, M. S.: Shape sensing of polymer core composite electrical transmission lines using FBG sensors. IEEE Trans. Instrum. Meas. 69(1), 249–257 (2019)CrossRef
38.
Zurück zum Zitat Qian, M., Yu, Y., Ren, N., Wang, J., Jin, X.: Sliding sensor using fiber Bragg grating for mechanical fingers. Opt. Exp. 26(1), 254–264 (2018)CrossRef Qian, M., Yu, Y., Ren, N., Wang, J., Jin, X.: Sliding sensor using fiber Bragg grating for mechanical fingers. Opt. Exp. 26(1), 254–264 (2018)CrossRef
Metadaten
Titel
Analysis and optimization of uniform FBG structure for sensing and communication applications
verfasst von
M. Divya shree
A. Sangeetha
Prabu Krishnan
Publikationsdatum
14.03.2020
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 3/2020
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-020-00880-1

Weitere Artikel der Ausgabe 3/2020

Photonic Network Communications 3/2020 Zur Ausgabe

Neuer Inhalt