Skip to main content
Erschienen in: Neural Computing and Applications 1/2019

18.04.2017 | Original Article

Analysis of magnetic properties of nanoparticles due to applied magnetic dipole in aqueous medium with momentum slip condition

verfasst von: A. Majeed, A. Zeeshan, T. Hayat

Erschienen in: Neural Computing and Applications | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article examines the boundary layer flow of magnetic nanofluid over a stretching surface with velocity slip condition. Water is selected as a base liquid whereas ferromagnetic, paramagnetic, diamagnetic, anti-ferromagnetic, and ferrimagnetic are chosen as nanoparticles. The use of magnetic nanoparticle is to control the flow and heat transfer process via external magnetic field. The governing partial differential equations are transformed into highly nonlinear ordinary differential equations. Numerical solution of the resulting problem is obtained. Effect of emerging physical parameters on velocity, temperature, skin friction coefficient, and Nusselt number are explained graphically. We observe that diamagnetic case has gained maximum thermal conductivity as compared with the other ones. Furthermore, skin friction coefficient increases with the variation of β and K1, and opposite interpretation is noted for Nusselt number.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Keblinski P, Prasher R, Eapen J (2008) Thermal conductance of nanofluids: is the controversy over? J Nanopart Res 10(7):1089–1097CrossRef Keblinski P, Prasher R, Eapen J (2008) Thermal conductance of nanofluids: is the controversy over? J Nanopart Res 10(7):1089–1097CrossRef
2.
Zurück zum Zitat Volz S (Ed) (2009) Thermal nanosystems and nanomaterials (Vol. 118). Springer Science and Business Media Volz S (Ed) (2009) Thermal nanosystems and nanomaterials (Vol. 118). Springer Science and Business Media
3.
Zurück zum Zitat Godson L, Raja B, Lal DM, Wongwises S (2010) Enhancement of heat transfer using nanofluids—an overview. Renew Sust Energ Rev 14(2):629–641CrossRef Godson L, Raja B, Lal DM, Wongwises S (2010) Enhancement of heat transfer using nanofluids—an overview. Renew Sust Energ Rev 14(2):629–641CrossRef
4.
Zurück zum Zitat Das SK, Choi SU, Yu W, Pradeep T (2007) Nanofluids: science and technology. John Wiley and Sons Das SK, Choi SU, Yu W, Pradeep T (2007) Nanofluids: science and technology. John Wiley and Sons
5.
Zurück zum Zitat Özerinç S, Kakaç S, Yazıcıoğlu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8(2):145–170CrossRef Özerinç S, Kakaç S, Yazıcıoğlu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8(2):145–170CrossRef
6.
Zurück zum Zitat Wen D, Lin G, Vafaei S, Zhang K (2009) Review of nanofluids for heat transfer applications. Particuology 7(2):141–150CrossRef Wen D, Lin G, Vafaei S, Zhang K (2009) Review of nanofluids for heat transfer applications. Particuology 7(2):141–150CrossRef
7.
Zurück zum Zitat Nkurikiyimfura I, Wang Y, Pan Z (2013) Heat transfer enhancement by magnetic nanofluids—a review. Renew Sust Energ Rev 21:548–561CrossRef Nkurikiyimfura I, Wang Y, Pan Z (2013) Heat transfer enhancement by magnetic nanofluids—a review. Renew Sust Energ Rev 21:548–561CrossRef
8.
Zurück zum Zitat Odenbach S (2004) Recent progress in magnetic fluid research. J Physic Conden Matter 16(32):R1135CrossRef Odenbach S (2004) Recent progress in magnetic fluid research. J Physic Conden Matter 16(32):R1135CrossRef
9.
Zurück zum Zitat Ganguly R, Puri IK (2007) Field-assisted self-assembly of superparamagnetic nanoparticles for biomedical, MEMS and BioMEMS applications. Adv Appl Mechanics 41:293–335CrossRef Ganguly R, Puri IK (2007) Field-assisted self-assembly of superparamagnetic nanoparticles for biomedical, MEMS and BioMEMS applications. Adv Appl Mechanics 41:293–335CrossRef
10.
Zurück zum Zitat Vales-Pinzón C, Alvarado-Gil JJ, Medina-Esquivel R, Martínez-Torres P (2014) Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field. J Magn Magn Mat 369:114–121CrossRef Vales-Pinzón C, Alvarado-Gil JJ, Medina-Esquivel R, Martínez-Torres P (2014) Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field. J Magn Magn Mat 369:114–121CrossRef
11.
Zurück zum Zitat Yellen BB, Fridman G, Friedman G (2004) Ferrofluid lithography. Nanotechnology 15(10):S562CrossRef Yellen BB, Fridman G, Friedman G (2004) Ferrofluid lithography. Nanotechnology 15(10):S562CrossRef
12.
Zurück zum Zitat Odenbach S (Ed) (2008) Ferrofluids: magnetically controllable fluids and their applications (vol. 594). Springer Odenbach S (Ed) (2008) Ferrofluids: magnetically controllable fluids and their applications (vol. 594). Springer
13.
Zurück zum Zitat Choi SUS, George Z, Keblinski P (2004) Encyclopedia. Nanosci Nano Technol 6:755–757 Choi SUS, George Z, Keblinski P (2004) Encyclopedia. Nanosci Nano Technol 6:755–757
14.
Zurück zum Zitat Yu DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29:432–460CrossRef Yu DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29:432–460CrossRef
15.
Zurück zum Zitat Sheikholeslami M (2017) Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lette A 381(5):494–503CrossRef Sheikholeslami M (2017) Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lette A 381(5):494–503CrossRef
16.
Zurück zum Zitat Abareshi M, Goharshadi EK, Zebarjad SM, Fadafan HK, Youssefi A (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 322(24):3895–3901CrossRef Abareshi M, Goharshadi EK, Zebarjad SM, Fadafan HK, Youssefi A (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 322(24):3895–3901CrossRef
17.
Zurück zum Zitat Li Q, Xuan Y, Wang J (2005) Experimental investigations on transport properties of magnetic fluids. Exp Thermal Fluid Sci 30:109–116CrossRef Li Q, Xuan Y, Wang J (2005) Experimental investigations on transport properties of magnetic fluids. Exp Thermal Fluid Sci 30:109–116CrossRef
18.
Zurück zum Zitat Yirga Y, Tesfay D (2015) Heat and mass transfer in MHD flow of nanofluids through a porous media due to a permeable stretching sheet with viscous dissipation and chemical reaction effects. World Acad Sci, Eng Tech, Int J Mech, Aero, Indus, Mecha Manu Eng 9:674–681 Yirga Y, Tesfay D (2015) Heat and mass transfer in MHD flow of nanofluids through a porous media due to a permeable stretching sheet with viscous dissipation and chemical reaction effects. World Acad Sci, Eng Tech, Int J Mech, Aero, Indus, Mecha Manu Eng 9:674–681
19.
Zurück zum Zitat Sheikholeslami M, Vajravelu K (2017) Nanofluid flow and heat transfer in a cavity with variable magnetic field. Applied Math Comput 298:272–282MathSciNet Sheikholeslami M, Vajravelu K (2017) Nanofluid flow and heat transfer in a cavity with variable magnetic field. Applied Math Comput 298:272–282MathSciNet
20.
Zurück zum Zitat Sheikholeslami M, Rokni HB (2017) Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf 107:288–299CrossRef Sheikholeslami M, Rokni HB (2017) Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf 107:288–299CrossRef
21.
Zurück zum Zitat Sheikholeslami M, Rashidi MM (2015) Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluid. J Taiwan Inst Chem Eng 56:6–15CrossRef Sheikholeslami M, Rashidi MM (2015) Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluid. J Taiwan Inst Chem Eng 56:6–15CrossRef
22.
Zurück zum Zitat Sheikholeslami M, Ganji DD, Rashidi MM (2015) Ferrofluid flow and heat transfer in semi annulus enclosure in the presence of magnetic source considering thermal radiation. J Taiwan Inst Chem Eng 47:6–17CrossRef Sheikholeslami M, Ganji DD, Rashidi MM (2015) Ferrofluid flow and heat transfer in semi annulus enclosure in the presence of magnetic source considering thermal radiation. J Taiwan Inst Chem Eng 47:6–17CrossRef
23.
Zurück zum Zitat Li Q, Xuan Y (2009) Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field. Exp Therm Fluid S 33:91–596 Li Q, Xuan Y (2009) Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field. Exp Therm Fluid S 33:91–596
24.
Zurück zum Zitat Ramzan M, Bilal M, Chung JD (2017) Radiative flow of Powell-Eyring magneto-Nanofluid over a stretching cylinder with chemical reaction and double stratification near a stagnation point. PLoS One 12(1):e0170790CrossRef Ramzan M, Bilal M, Chung JD (2017) Radiative flow of Powell-Eyring magneto-Nanofluid over a stretching cylinder with chemical reaction and double stratification near a stagnation point. PLoS One 12(1):e0170790CrossRef
25.
Zurück zum Zitat Ramzan M, Bilal M, Farooq U, Chung JD (2016) Mixed convective radiative flow of second grade nanofluid with convective boundary conditions. An optimal solution. Results Phy 6:796–804CrossRef Ramzan M, Bilal M, Farooq U, Chung JD (2016) Mixed convective radiative flow of second grade nanofluid with convective boundary conditions. An optimal solution. Results Phy 6:796–804CrossRef
26.
Zurück zum Zitat Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14(11):21266–21305CrossRef Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14(11):21266–21305CrossRef
27.
Zurück zum Zitat Shahzad F, Haq RU, Al-Mdallal QM (2016) Water driven Cu nanoparticles between two concentric ducts with oscillatory pressure gradient. J Mol Liq 224:322–332CrossRef Shahzad F, Haq RU, Al-Mdallal QM (2016) Water driven Cu nanoparticles between two concentric ducts with oscillatory pressure gradient. J Mol Liq 224:322–332CrossRef
28.
Zurück zum Zitat Haq RU, Shahzad F, Al-Mdallal QM (2017) MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders. Results in Physics 7:57–68CrossRef Haq RU, Shahzad F, Al-Mdallal QM (2017) MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders. Results in Physics 7:57–68CrossRef
29.
Zurück zum Zitat Khan JA, Mustafa M, Hayat T, Alsaedi A (2015) Three-dimensional flow of nanofluid over a non-linearly stretching sheet: an application to solar energy. Int J Heat Mass Transf 86:158–164CrossRef Khan JA, Mustafa M, Hayat T, Alsaedi A (2015) Three-dimensional flow of nanofluid over a non-linearly stretching sheet: an application to solar energy. Int J Heat Mass Transf 86:158–164CrossRef
30.
Zurück zum Zitat Hayat T, Imtiaz M, Alsaedi A (2015) MHD 3D flow of nanofluid in presence of convective conditions. J Mol Liq 212:203–208CrossRef Hayat T, Imtiaz M, Alsaedi A (2015) MHD 3D flow of nanofluid in presence of convective conditions. J Mol Liq 212:203–208CrossRef
31.
Zurück zum Zitat Majeed A, Zeeshan A, Ellahi R (2016) Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux. J Mol Liq 223:528–533CrossRef Majeed A, Zeeshan A, Ellahi R (2016) Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux. J Mol Liq 223:528–533CrossRef
32.
Zurück zum Zitat Farooq U, Zhao YL, Hayat T, Alsaedi A, Liao SJ (2015) Application of the HAM-based Mathematica package BVPh 2.0 on MHD Falkner-Skan flow of nano-fluid. Comp Fluids 111:69–75MathSciNetCrossRefMATH Farooq U, Zhao YL, Hayat T, Alsaedi A, Liao SJ (2015) Application of the HAM-based Mathematica package BVPh 2.0 on MHD Falkner-Skan flow of nano-fluid. Comp Fluids 111:69–75MathSciNetCrossRefMATH
33.
Zurück zum Zitat Hussain T, Shehzad SA, Hayat T, Alsaedi A (2015) Hydromagnetic flow of third grade nanofluid with viscous dissipation and flux conditions. AIP Adv 5(8):087169CrossRef Hussain T, Shehzad SA, Hayat T, Alsaedi A (2015) Hydromagnetic flow of third grade nanofluid with viscous dissipation and flux conditions. AIP Adv 5(8):087169CrossRef
34.
Zurück zum Zitat Sheikholeslami M, Hayat T, Alsaedi A (2016) MHD free convection of Al2O3-water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf 96:513–524CrossRef Sheikholeslami M, Hayat T, Alsaedi A (2016) MHD free convection of Al2O3-water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf 96:513–524CrossRef
35.
Zurück zum Zitat Imtiaz M, Hayat T, Alsaedi A (2016) Flow of magneto nanofluid by a radiative exponentially stretching surface with dissipation effect. Adv Powd Tech 27(5):2214–2222CrossRef Imtiaz M, Hayat T, Alsaedi A (2016) Flow of magneto nanofluid by a radiative exponentially stretching surface with dissipation effect. Adv Powd Tech 27(5):2214–2222CrossRef
36.
Zurück zum Zitat Ramzan M, Bilal M, Chung JD, Mann AB (2017) On MHD radiative Jeffery nanofluid flow with convective heat and mass boundary conditions. Neural Comput Appl:1–10 Ramzan M, Bilal M, Chung JD, Mann AB (2017) On MHD radiative Jeffery nanofluid flow with convective heat and mass boundary conditions. Neural Comput Appl:1–10
37.
Zurück zum Zitat Ramzan M, Yousaf F, Farooq M, Chung JD (2016) Mixed convective viscoelastic nanofluid flow past a porous media with Soret-Dufour effects. Commun in Theor Phy 66(1):133MathSciNetCrossRefMATH Ramzan M, Yousaf F, Farooq M, Chung JD (2016) Mixed convective viscoelastic nanofluid flow past a porous media with Soret-Dufour effects. Commun in Theor Phy 66(1):133MathSciNetCrossRefMATH
38.
Zurück zum Zitat Prabhakar B, Bandari S, Haq RU (2016) Impact of inclined Lorentz forces on tangent hyperbolic nanofluid flow with zero normal flux of nanoparticles at the stretching sheet. Neural Comput Appl 1–10. doi:10.1007/s00521-016-2601-4 Prabhakar B, Bandari S, Haq RU (2016) Impact of inclined Lorentz forces on tangent hyperbolic nanofluid flow with zero normal flux of nanoparticles at the stretching sheet. Neural Comput Appl 1–10. doi:10.​1007/​s00521-016-2601-4
39.
Zurück zum Zitat Prabhakar B, Haq RU, Bandari S, Al-Mdallal QM (2016) Mixed convection flow of thermally stratified MHD nanofluid over an exponentially stretching surface with viscous dissipation effect. J Taiwan Inst of Chem Eng 71:307–314 Prabhakar B, Haq RU, Bandari S, Al-Mdallal QM (2016) Mixed convection flow of thermally stratified MHD nanofluid over an exponentially stretching surface with viscous dissipation effect. J Taiwan Inst of Chem Eng 71:307–314
40.
Zurück zum Zitat Sheikholeslami M (2017) Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J Mol Liq 229:137–147CrossRef Sheikholeslami M (2017) Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J Mol Liq 229:137–147CrossRef
41.
Zurück zum Zitat Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2(2):210–222CrossRef Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2(2):210–222CrossRef
42.
Zurück zum Zitat Bocquet L, Barrat JL (2007) Flow boundary conditions from nano- to micro-scales. Soft Matter 3:685e693CrossRef Bocquet L, Barrat JL (2007) Flow boundary conditions from nano- to micro-scales. Soft Matter 3:685e693CrossRef
43.
Zurück zum Zitat Van Gorder RA, Sweet E, Vajravelu K (2010) Nano boundary layers over stretching surfaces. Commun Nonlinear Sci Numer Simulat 15:1494-1500 Van Gorder RA, Sweet E, Vajravelu K (2010) Nano boundary layers over stretching surfaces. Commun Nonlinear Sci Numer Simulat 15:1494-1500
44.
Zurück zum Zitat Titus LS, Abraham A (2015) Ferromagnetic liquid flow due to gravity-aligned stretching of an elastic sheet. J Appl Fluid Mech 8(3):591–600CrossRef Titus LS, Abraham A (2015) Ferromagnetic liquid flow due to gravity-aligned stretching of an elastic sheet. J Appl Fluid Mech 8(3):591–600CrossRef
45.
Zurück zum Zitat Tiwari RK, Das MN (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf 50:2002–2018CrossRefMATH Tiwari RK, Das MN (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf 50:2002–2018CrossRefMATH
46.
Zurück zum Zitat Andersson HI, Valnes OA (1998) Flow of a heated Ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech 12:39–47CrossRefMATH Andersson HI, Valnes OA (1998) Flow of a heated Ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech 12:39–47CrossRefMATH
47.
Zurück zum Zitat Sheikholeslami M, Chamkha AJ (2016) Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf Part A Applications 69(10):1186–1200CrossRef Sheikholeslami M, Chamkha AJ (2016) Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf Part A Applications 69(10):1186–1200CrossRef
48.
Zurück zum Zitat Domkundwar AV, Domdundwar VM (2004) Heat and mass transfer data book. Dhanparai and co (p) Ltd. Edu Tech Pub, Delhi Domkundwar AV, Domdundwar VM (2004) Heat and mass transfer data book. Dhanparai and co (p) Ltd. Edu Tech Pub, Delhi
Metadaten
Titel
Analysis of magnetic properties of nanoparticles due to applied magnetic dipole in aqueous medium with momentum slip condition
verfasst von
A. Majeed
A. Zeeshan
T. Hayat
Publikationsdatum
18.04.2017
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 1/2019
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-2989-5

Weitere Artikel der Ausgabe 1/2019

Neural Computing and Applications 1/2019 Zur Ausgabe