Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.07.2022

Analysis of Phase Noise Issues in Millimeter Wave Systems for 5G Communications

verfasst von: Udayakumar Easwaran, V. Krishnaveni

Erschienen in: Wireless Personal Communications

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Many varieties of technologies have been introduced for mobile communication and data traffic plays a major role in each generation of communication systems. 5G is termed as Next Generation Wireless Mobile Networks that has higher bandwidth, maximum spectral efficiency, super-speed connection, minimum energy consumption, when compared to 4G wireless networks. Next Generation of Mobile communication will use mmWave frequency bands for 5G systems. Millimeter wave transmission is one of the greatest technology in 5G mobile communication systems having higher bandwidth. It is also considered to be having high user demands and have a mobile growth in coming years. It is a promising technology having a non-shortage bandwidth and traffic demands. The major drawback in this system is Phase noise, In-phase and Quadrature timing mismatch, PAPR, local oscillator noise and blockage effects. The phase noise occurs due to the imperfections in local oscillators. In this paper, we discuss the Phase noise issues in millimeter wave systems. This review will act as guide for researchers to compare the various emerging phase noise problems and mitigation techniques for future 5G wireless networks.
Literatur
1.
Zurück zum Zitat Koohian, A., Mehrpouyan, H., Nasir, A. A., & Durrani, S. (2019). Joint channel and phase noise estimation for mmWave full-duplex communication system. EURASIP Journal on Advances in Signal Processing, 2019, 18. CrossRef Koohian, A., Mehrpouyan, H., Nasir, A. A., & Durrani, S. (2019). Joint channel and phase noise estimation for mmWave full-duplex communication system. EURASIP Journal on Advances in Signal Processing, 2019, 18. CrossRef
2.
Zurück zum Zitat Udayakumar, E., & Krishnaveni, V. (2019). Analysis of various interference in millimeter-wave communication systems: a survey. In Proceeding of international conference on computing, communication and networking technologies (pp. 1–5), Uttar Pradesh. Udayakumar, E., & Krishnaveni, V. (2019). Analysis of various interference in millimeter-wave communication systems: a survey. In Proceeding of international conference on computing, communication and networking technologies (pp. 1–5), Uttar Pradesh.
3.
Zurück zum Zitat Quadri, A., Zeng, H., & Hou, Y. T. (2019). A real-time mmWave communication testbed with phase noise cancellation. In IEEE conference on computer communications workshops (pp. 455–460), France. Quadri, A., Zeng, H., & Hou, Y. T. (2019). A real-time mmWave communication testbed with phase noise cancellation. In IEEE conference on computer communications workshops (pp. 455–460), France.
4.
Zurück zum Zitat Abdelhakam, M. M., Elmesalawy, M. M., Mahmoud, K. R., & Ibrahim, I. I. (2018). Efficient WMMSE beamforming for 5G mmWave cellular networks exploiting the effect of antenna array geometries. IET Communications, 12(2), 169–178. CrossRef Abdelhakam, M. M., Elmesalawy, M. M., Mahmoud, K. R., & Ibrahim, I. I. (2018). Efficient WMMSE beamforming for 5G mmWave cellular networks exploiting the effect of antenna array geometries. IET Communications, 12(2), 169–178. CrossRef
5.
Zurück zum Zitat LaCaille, G., Puglielli, A., Alon, E., Nikolic, B., & Niknejad, A. (2019). Optimizing the LO distribution architecture of mm-wave massive MIMO receivers. Signal Processing, pp. 1–11. arXiv:​1911.​01339. LaCaille, G., Puglielli, A., Alon, E., Nikolic, B., & Niknejad, A. (2019). Optimizing the LO distribution architecture of mm-wave massive MIMO receivers. Signal Processing, pp. 1–11. arXiv:​1911.​01339.
6.
Zurück zum Zitat Lee, T. J., & Ko, Y. C. (2017). Channel estimation and data detection in the presence of phase noise in MIMO-OFDM systems with independent oscillators. IEEE Access, 5, 9647–9662. CrossRef Lee, T. J., & Ko, Y. C. (2017). Channel estimation and data detection in the presence of phase noise in MIMO-OFDM systems with independent oscillators. IEEE Access, 5, 9647–9662. CrossRef
7.
Zurück zum Zitat Busari, S. A., Huq, K. M. S., Mumtaz, S., Dai, L., & Rodriguez, J. (2017). Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Communications Surveys & Tutorials, 20(2), 836–869. CrossRef Busari, S. A., Huq, K. M. S., Mumtaz, S., Dai, L., & Rodriguez, J. (2017). Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Communications Surveys & Tutorials, 20(2), 836–869. CrossRef
8.
Zurück zum Zitat Chung, M., Liu, L., & Edfors, O. (2019). Phase noise compensation for OFDM systems exploiting coherence bandwidth. In: IEEE international workshop on signal processing advances in wireless communications (pp. 1–5), France. Chung, M., Liu, L., & Edfors, O. (2019). Phase noise compensation for OFDM systems exploiting coherence bandwidth. In: IEEE international workshop on signal processing advances in wireless communications (pp. 1–5), France.
9.
Zurück zum Zitat Chen, X., Wang, H., Fan, W., Zou, Y., Wolfgang, A., Svensson, T., & Luo, J. (2017). Phase noise effect on MIMO-OFDM systems with common and independent oscillators. Wireless Communications and Mobile Computing, 2017, 8238234. Chen, X., Wang, H., Fan, W., Zou, Y., Wolfgang, A., Svensson, T., & Luo, J. (2017). Phase noise effect on MIMO-OFDM systems with common and independent oscillators. Wireless Communications and Mobile Computing, 2017, 8238234.
10.
Zurück zum Zitat Samara, L., Mokhtar, M., Özdemir, Ö., Hamila, R., & Khattab, T. (2016). Residual self-interference analysis for full-duplex OFDM transceivers under phase noise and I/Q imbalance. IEEE Communications Letters, 21(2), 314–317. CrossRef Samara, L., Mokhtar, M., Özdemir, Ö., Hamila, R., & Khattab, T. (2016). Residual self-interference analysis for full-duplex OFDM transceivers under phase noise and I/Q imbalance. IEEE Communications Letters, 21(2), 314–317. CrossRef
11.
Zurück zum Zitat Buzzi, S., D’Andrea, C., Li, D., & Feng, S. (2019). MIMO-UFMC transceiver schemes for millimeter-wave wireless communications. IEEE Transactions on Communications, 67(5), 3323–3336. CrossRef Buzzi, S., D’Andrea, C., Li, D., & Feng, S. (2019). MIMO-UFMC transceiver schemes for millimeter-wave wireless communications. IEEE Transactions on Communications, 67(5), 3323–3336. CrossRef
12.
Zurück zum Zitat Khanzadi, M. R., Krishnan, R., Kuylenstierna, D., & Eriksson, T. (2014). Oscillator phase noise and small-scale channel fading in higher frequency bands. In IEEE Globecom Workshops (pp. 410-415), Austin. Khanzadi, M. R., Krishnan, R., Kuylenstierna, D., & Eriksson, T. (2014). Oscillator phase noise and small-scale channel fading in higher frequency bands. In IEEE Globecom Workshops (pp. 410-415), Austin.
13.
Zurück zum Zitat Zou, Q., Tarighat, A., Khajehnouri, N., & Sayed, A. H. (2006). A phase noise compensation scheme for OFDM wireless systems. In 2006 14th European signal processing conference (pp. 1–5), Florence. Zou, Q., Tarighat, A., Khajehnouri, N., & Sayed, A. H. (2006). A phase noise compensation scheme for OFDM wireless systems. In 2006 14th European signal processing conference (pp. 1–5), Florence.
14.
Zurück zum Zitat Chen, J., Olsson, B. E., Persson, A., & Hansryd, J. (2014). Experimental demonstration of RF-pilot-based phase noise mitigation for millimeter-wave systems. In IEEE 80th vehicular technology conference (pp. 1-5), Vancouver. Chen, J., Olsson, B. E., Persson, A., & Hansryd, J. (2014). Experimental demonstration of RF-pilot-based phase noise mitigation for millimeter-wave systems. In IEEE 80th vehicular technology conference (pp. 1-5), Vancouver.
15.
Zurück zum Zitat Blandino, S., Desset, C., Mangraviti, G., Bourdoux, A., & Pollin, S. (2018). Phase-noise mitigation at 60 GHz with a novel hybrid MIMO architecture. In Proceedings of the 2nd ACM workshop on millimeter wave networks and sensing systems (pp. 39–44). Blandino, S., Desset, C., Mangraviti, G., Bourdoux, A., & Pollin, S. (2018). Phase-noise mitigation at 60 GHz with a novel hybrid MIMO architecture. In Proceedings of the 2nd ACM workshop on millimeter wave networks and sensing systems (pp. 39–44).
16.
Zurück zum Zitat Rasekh, M. E., Abdelghany, M., Madhowz, U., & Rodwell, M. (2019). Phase noise analysis for mmwave massive MIMO: A design framework for scaling via tiled architectures. In 2019 53rd Annual Conference on Information Sciences and Systems (pp. 1-6), USA. Rasekh, M. E., Abdelghany, M., Madhowz, U., & Rodwell, M. (2019). Phase noise analysis for mmwave massive MIMO: A design framework for scaling via tiled architectures. In 2019 53rd Annual Conference on Information Sciences and Systems (pp. 1-6), USA.
17.
Zurück zum Zitat Yoon, J., Jo, O., Choi, J. W., Lee, S., Choi, J., & Kim, S. C. (2018). SNR analysis and estimation for efficient phase noise mitigation in millimetre-wave SC-FDE systems. IET Communications, 12(18), 2347–2356. CrossRef Yoon, J., Jo, O., Choi, J. W., Lee, S., Choi, J., & Kim, S. C. (2018). SNR analysis and estimation for efficient phase noise mitigation in millimetre-wave SC-FDE systems. IET Communications, 12(18), 2347–2356. CrossRef
18.
Zurück zum Zitat Yang, X., Matthaiou, M., Yang, J., Wen, C. K., Gao, F., & Jin, S. (2019). Hardware-constrained millimeter-wave systems for 5G: Challenges, opportunities, and solutions. IEEE Communications Magazine, 57(1), 44–50. CrossRef Yang, X., Matthaiou, M., Yang, J., Wen, C. K., Gao, F., & Jin, S. (2019). Hardware-constrained millimeter-wave systems for 5G: Challenges, opportunities, and solutions. IEEE Communications Magazine, 57(1), 44–50. CrossRef
19.
Zurück zum Zitat Chen, X., Fang, C., Zou, Y., Wolfgang, A., & Svensson, T. (2017). Beamforming MIMO-OFDM systems in the presence of phase noises at millimeter-wave frequencies. In 2017 IEEE Wireless Communications and Networking Conference Workshops (pp. 1–6), San Francisco. Chen, X., Fang, C., Zou, Y., Wolfgang, A., & Svensson, T. (2017). Beamforming MIMO-OFDM systems in the presence of phase noises at millimeter-wave frequencies. In 2017 IEEE Wireless Communications and Networking Conference Workshops (pp. 1–6), San Francisco.
20.
Zurück zum Zitat Syrjala, V., Valkama, M., Tchamov, N. N., & Rinne, J. (2009). Phase noise modelling and mitigation techniques in OFDM communications systems. In 2009 Wireless telecommunications symposium (pp. 1–7), Prague. Syrjala, V., Valkama, M., Tchamov, N. N., & Rinne, J. (2009). Phase noise modelling and mitigation techniques in OFDM communications systems. In 2009 Wireless telecommunications symposium (pp. 1–7), Prague.
21.
Zurück zum Zitat Zhang, Y. P., Liu, J., Feng, S., & Zhang, P. (2017). Pilot design for phase noise mitigation in millimeter wave MIMO-OFDM systems. In IEEE 85th vehicular technology conference (pp. 1–6), Sydney, NSW. Zhang, Y. P., Liu, J., Feng, S., & Zhang, P. (2017). Pilot design for phase noise mitigation in millimeter wave MIMO-OFDM systems. In IEEE 85th vehicular technology conference (pp. 1–6), Sydney, NSW.
22.
Zurück zum Zitat Rabiei, P., Namgoong, W., & Al-Dhahir, N. (2010). Reduced-complexity joint baseband compensation of phase noise and I/Q imbalance for MIMO-OFDM systems. IEEE Transactions on Wireless Communications, 9(11), 3450–3460. CrossRef Rabiei, P., Namgoong, W., & Al-Dhahir, N. (2010). Reduced-complexity joint baseband compensation of phase noise and I/Q imbalance for MIMO-OFDM systems. IEEE Transactions on Wireless Communications, 9(11), 3450–3460. CrossRef
23.
Zurück zum Zitat Syrjala, V., Valkama, M., Tchamov, N. N., & Rinne, J. (2009). Phase noise modelling and mitigation techniques in OFDM communications systems. In Wireless telecommunications symposium (pp. 1–7), Prague. Syrjala, V., Valkama, M., Tchamov, N. N., & Rinne, J. (2009). Phase noise modelling and mitigation techniques in OFDM communications systems. In Wireless telecommunications symposium (pp. 1–7), Prague.
24.
Zurück zum Zitat Chen, X., Fan, W., & Zhang, A. (2018). On low-pass phase noise mitigation in OFDM system for mmWave communications. In B. Li, L. Shu, & D. Zeng (Eds.), Communications and networking ChinaCom 2017. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering. (Vol. 237). Springer. Chen, X., Fan, W., & Zhang, A. (2018). On low-pass phase noise mitigation in OFDM system for mmWave communications. In B. Li, L. Shu, & D. Zeng (Eds.), Communications and networking ChinaCom 2017. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering. (Vol. 237). Springer.
25.
Zurück zum Zitat Zou, Q., Tarighat, A., & Sayed, A. H. (2007). Compensation of phase noise in OFDM wireless systems. IEEE Transactions on Signal Processing, 55(11), 5407–5424. MathSciNetCrossRef Zou, Q., Tarighat, A., & Sayed, A. H. (2007). Compensation of phase noise in OFDM wireless systems. IEEE Transactions on Signal Processing, 55(11), 5407–5424. MathSciNetCrossRef
26.
Zurück zum Zitat Gu, S., Long, H., & Li, Q. (2019). Phase noise estimation and compensation algorithms for 5G systems. In X. Liu, D. Cheng, & L. Jinfeng (Eds.), Communications and networking. ChinaCom 2018. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering. (Vol. 262). Springer. Gu, S., Long, H., & Li, Q. (2019). Phase noise estimation and compensation algorithms for 5G systems. In X. Liu, D. Cheng, & L. Jinfeng (Eds.), Communications and networking. ChinaCom 2018. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering. (Vol. 262). Springer.
27.
Zurück zum Zitat Li, R., Masmoudi, A., & Le-Ngoc, T. (2017). Self-interference cancellation with nonlinearity and phase-noise suppression in full-duplex systems. IEEE Transactions on Vehicular Technology, 67(3), 2118–2129. CrossRef Li, R., Masmoudi, A., & Le-Ngoc, T. (2017). Self-interference cancellation with nonlinearity and phase-noise suppression in full-duplex systems. IEEE Transactions on Vehicular Technology, 67(3), 2118–2129. CrossRef
28.
Zurück zum Zitat Syrjala, V., Valkama, M., Anttila, L., Riihonen, T., & Korpi, D. (2014). Analysis of oscillator phase-noise effects on self-interference cancellation in full-duplex OFDM radio transceivers. IEEE Transactions on Wireless Communications, 13(6), 2977–2990. CrossRef Syrjala, V., Valkama, M., Anttila, L., Riihonen, T., & Korpi, D. (2014). Analysis of oscillator phase-noise effects on self-interference cancellation in full-duplex OFDM radio transceivers. IEEE Transactions on Wireless Communications, 13(6), 2977–2990. CrossRef
29.
Zurück zum Zitat Grimwood, N., Dean, T., & Goldsmith, A. (2018). Robustness of FDM-FDCP modulation to phase noise in millimeter wave systems. In 52nd Asilomar conference on signals, systems, and computers (pp. 264–268), Pacific Grove, USA. Grimwood, N., Dean, T., & Goldsmith, A. (2018). Robustness of FDM-FDCP modulation to phase noise in millimeter wave systems. In 52nd Asilomar conference on signals, systems, and computers (pp. 264–268), Pacific Grove, USA.
30.
Zurück zum Zitat Thomas, T. A., Cudak, M., & Kovarik, T. (2015). Blind phase noise mitigation for a 72 GHz millimeter wave system. In IEEE international conference on communications (pp. 1352–1357), London. Thomas, T. A., Cudak, M., & Kovarik, T. (2015). Blind phase noise mitigation for a 72 GHz millimeter wave system. In IEEE international conference on communications (pp. 1352–1357), London.
31.
Zurück zum Zitat Xu, Z., & Ren, G. (2017). Phase noise suppression algorithm based on modified LLR metric in SC-FDMA system. Journal of Electrical and Computer Engineering, 2017, 9410483. Xu, Z., & Ren, G. (2017). Phase noise suppression algorithm based on modified LLR metric in SC-FDMA system. Journal of Electrical and Computer Engineering, 2017, 9410483.
32.
Zurück zum Zitat Surabhi, G. D., Ramachandran, M. K., & Chockalingam, A. (2019). OTFS modulation with phase noise in mmWave communications. In 2019 IEEE 89th vehicular technology conference (pp. 1–5), Malaysia. Surabhi, G. D., Ramachandran, M. K., & Chockalingam, A. (2019). OTFS modulation with phase noise in mmWave communications. In 2019 IEEE 89th vehicular technology conference (pp. 1–5), Malaysia.
33.
Zurück zum Zitat Qamar, F., Hindia, M. H. D., Dimyati, K., Noordin, K. A., & Amiri, I. S. (2019). Interference management issues for the future 5G network: a review. Telecommunication Systems, 71(4), 627–643. CrossRef Qamar, F., Hindia, M. H. D., Dimyati, K., Noordin, K. A., & Amiri, I. S. (2019). Interference management issues for the future 5G network: a review. Telecommunication Systems, 71(4), 627–643. CrossRef
34.
Zurück zum Zitat Udayakumar, E., & Krishnaveni, V. (2020). A review on interference management in millimeter-wave MIMO systems for future 5G networks. In H. Saini, T. Srinivas, D. Vinod Kumar, & K. Chandragupta Mauryan (Eds.), Innovations in electrical and electronics engineering. Lecture notes in electrical engineering. (Vol. 626). Springer. Udayakumar, E., & Krishnaveni, V. (2020). A review on interference management in millimeter-wave MIMO systems for future 5G networks. In H. Saini, T. Srinivas, D. Vinod Kumar, & K. Chandragupta Mauryan (Eds.), Innovations in electrical and electronics engineering. Lecture notes in electrical engineering. (Vol. 626). Springer.
35.
Zurück zum Zitat Udayakumar, E., & Vetrivelan, P. (2015). PAPR reduction for OQAM/OFDM signals using optimized iterative clipping and filtering technique. In Proceedings of international conference on soft-computing and networks security (pp. 1–6), Coimbatore. Udayakumar, E., & Vetrivelan, P. (2015). PAPR reduction for OQAM/OFDM signals using optimized iterative clipping and filtering technique. In Proceedings of international conference on soft-computing and networks security (pp. 1–6), Coimbatore.
36.
Zurück zum Zitat Udayakumar, E., & Velan, V. (2015). PAPR reduction for OQAM/OFDM signals by using neural networks. International Journal of Applied Engineering Research, 10(41), 30292–30297. Udayakumar, E., & Velan, V. (2015). PAPR reduction for OQAM/OFDM signals by using neural networks. International Journal of Applied Engineering Research, 10(41), 30292–30297.
37.
Zurück zum Zitat Udayakumar, E., Palaniswamy, P., & Ponnusamy, V. (2020). Analysis of peak-to-average power ratio in OFDM systems using cognitive radio technology. In K. K. Singh, A. Singh, K. Cengiz, & D.-N. Le (Eds.), Machine learning and cognitive computing for mobile communications and wireless networks (pp. 179–202). Wiley. Udayakumar, E., Palaniswamy, P., & Ponnusamy, V. (2020). Analysis of peak-to-average power ratio in OFDM systems using cognitive radio technology. In K. K. Singh, A. Singh, K. Cengiz, & D.-N. Le (Eds.), Machine learning and cognitive computing for mobile communications and wireless networks (pp. 179–202). Wiley.
38.
Zurück zum Zitat Nasr, I., & Fahmy, Y. (2017). Millimeter-wave wireless backhauling for 5G small cells: Scalability of mesh over star topologies. In 2017 IEEE international symposium on a world of wireless, mobile and multimedia networks (pp. 1–6). Nasr, I., & Fahmy, Y. (2017). Millimeter-wave wireless backhauling for 5G small cells: Scalability of mesh over star topologies. In 2017 IEEE international symposium on a world of wireless, mobile and multimedia networks (pp. 1–6).
39.
Zurück zum Zitat Mahdi, H. F., Alheety, A. T., Hamid, N. A., & Kurnaz, S. (2021). Quantization-aware greedy antenna selection for multi-user massive MIMO systems. Progress in Electromagnetics Research C, 111, 15–24. CrossRef Mahdi, H. F., Alheety, A. T., Hamid, N. A., & Kurnaz, S. (2021). Quantization-aware greedy antenna selection for multi-user massive MIMO systems. Progress in Electromagnetics Research C, 111, 15–24. CrossRef
40.
Zurück zum Zitat Al-Heety, A. T., Islam, M. T., Rashid, A. H., Ali, H. N. A., Fadil, A. M., & Arabian, F. (2020). Performance evaluation of wireless data traffic in Mm wave massive MIMO communication. Indonesian Journal of Electrical Engineering and Computer Science, 20, 1342–1350. CrossRef Al-Heety, A. T., Islam, M. T., Rashid, A. H., Ali, H. N. A., Fadil, A. M., & Arabian, F. (2020). Performance evaluation of wireless data traffic in Mm wave massive MIMO communication. Indonesian Journal of Electrical Engineering and Computer Science, 20, 1342–1350. CrossRef
42.
Zurück zum Zitat Santacruz, J. P., Rommel, S., Johannsen, U., Jurado-Navas, A., & Monroy, I. T. (2021). Analysis and compensation of phase noise in Mm-Wave OFDM ARoF systems for beyond 5G. Journal of Lightwave Technology, 39(6), 1602–1610. CrossRef Santacruz, J. P., Rommel, S., Johannsen, U., Jurado-Navas, A., & Monroy, I. T. (2021). Analysis and compensation of phase noise in Mm-Wave OFDM ARoF systems for beyond 5G. Journal of Lightwave Technology, 39(6), 1602–1610. CrossRef
43.
Zurück zum Zitat Cooper, K. B., Durden, S. L., Roy, R. J., Siles, J. V., Monje, R. R., Dengler, R., Millán, L., & Beauchamp, R. (2021). Improving FM radar dynamic range using target phase noise cancellation. IEEE Journal of Microwaves., 1(2), 586–592. CrossRef Cooper, K. B., Durden, S. L., Roy, R. J., Siles, J. V., Monje, R. R., Dengler, R., Millán, L., & Beauchamp, R. (2021). Improving FM radar dynamic range using target phase noise cancellation. IEEE Journal of Microwaves., 1(2), 586–592. CrossRef
44.
Zurück zum Zitat Yao, T., Wang, X., Zhou, H., Tang, S., & Xu, C. (2020). A method of phase noise estimation and compensation based on Golay sequence in time domain for SC-FDE millimeter-wave communication systems. In: 2020 IEEE 6th international conference on computer and communications (ICCC) (pp. 278–282). Yao, T., Wang, X., Zhou, H., Tang, S., & Xu, C. (2020). A method of phase noise estimation and compensation based on Golay sequence in time domain for SC-FDE millimeter-wave communication systems. In: 2020 IEEE 6th international conference on computer and communications (ICCC) (pp. 278–282).
45.
Zurück zum Zitat Oh, J., & Kim, T.-K. (2020). Phase noise effect on millimeter-wave pre-5G systems. IEEE Access, 8, 187902–187913. CrossRef Oh, J., & Kim, T.-K. (2020). Phase noise effect on millimeter-wave pre-5G systems. IEEE Access, 8, 187902–187913. CrossRef
46.
Zurück zum Zitat Corvaja, R., & Armada, A. G. (2020). Analysis of SVD-based hybrid schemes for massive MIMO with phase noise and imperfect channel estimation. IEEE Transactions on Vehicular Technology, 69(7), 7325–7338. CrossRef Corvaja, R., & Armada, A. G. (2020). Analysis of SVD-based hybrid schemes for massive MIMO with phase noise and imperfect channel estimation. IEEE Transactions on Vehicular Technology, 69(7), 7325–7338. CrossRef
47.
Zurück zum Zitat Abdelhafid, E. S., Abata, M., Mazer, S., Fattah, M., Mehdi, M., El Bekkali, M., & Algani, C. (2020). Very low phase noise voltage controlled oscillator for 5G mm-wave communication systems. In 2020 1st international conference on innovative research in applied science, engineering and technology (IRASET) (pp. 1–4). Abdelhafid, E. S., Abata, M., Mazer, S., Fattah, M., Mehdi, M., El Bekkali, M., & Algani, C. (2020). Very low phase noise voltage controlled oscillator for 5G mm-wave communication systems. In 2020 1st international conference on innovative research in applied science, engineering and technology (IRASET) (pp. 1–4).
48.
Zurück zum Zitat Faragallah, O. S., El-Sayed, H. S., & El-Mashed, M. G. (2020). Estimation and tracking for millimeter wave MIMO systems under phase noise problem. IEEE Access, 8, 228009–228023. CrossRef Faragallah, O. S., El-Sayed, H. S., & El-Mashed, M. G. (2020). Estimation and tracking for millimeter wave MIMO systems under phase noise problem. IEEE Access, 8, 228009–228023. CrossRef
49.
Zurück zum Zitat Rasekh, M. E., Abdelghany, M., Madhow, U., & Rodwell, M. (2021). Phase noise in modular millimeter wave massive MIMO. IEEE Transactions on Wireless Communications, 20, 6522–6535. CrossRef Rasekh, M. E., Abdelghany, M., Madhow, U., & Rodwell, M. (2021). Phase noise in modular millimeter wave massive MIMO. IEEE Transactions on Wireless Communications, 20, 6522–6535. CrossRef
Metadaten
Titel
Analysis of Phase Noise Issues in Millimeter Wave Systems for 5G Communications
verfasst von
Udayakumar Easwaran
V. Krishnaveni
Publikationsdatum
04.07.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09810-y