Skip to main content

30.05.2024

Analysis of the HIV/AIDS Data Using Joint Modeling of Longitudinal (k,l)-Inflated Count and Time to Event Data in Clinical Trials

verfasst von: Mojtaba Zeinali Najafabadi, Ehsan Bahrami Samani

Erschienen in: Annals of Data Science

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Generalized linear mixed effect models (GLMEMs) are widely applied for the analysis of correlated non-Gaussian data such as those found in longitudinal studies. On the other hand, the Cox (proportional hazards, PHs) and the accelerated failure time (AFT) regression models are two well-known approaches in survival analysis to modeling time to event (TTE) data. In this article, we develop joint modeling of longitudinal count (LC) and TTE data and consider extensions with fixed effects and parametric random effects in our proposed joint models. The LC response is inflated in two points k and l (k < l) and we use some members of (k, l)-inflated power series distribution (PSD) as the distribution of this response. Also, for modeling of TTE process, the PHs model of Cox and the AFT model, based on a flexible hazard function, are separately proposed. One of the goals of the present paper is to evaluate and compare the performance of joint models of (k, l)-inflated LC and TTE data under two mentioned approaches via extensive simulations. The estimation is through the penalized likelihood method, and our concentration is on efficient computation and effective parameter selection. To assist efficient computation, the joint likelihoods of the observations and the latent variables of the random effects are used instead of the marginal likelihood of the observations. Finally, a real AIDS data example is presented to illustrate the potential applications of our joint models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dobson AJ, Barnett AG (2008) An introduction to generalized linear models, 3rd edn. Chapman & Hall/CRC, Boca RatonCrossRef Dobson AJ, Barnett AG (2008) An introduction to generalized linear models, 3rd edn. Chapman & Hall/CRC, Boca RatonCrossRef
2.
Zurück zum Zitat Hosmer DW, Lemeshow S, May S (2008) Applied survival analysis: regression modeling of time-to-event data, 2nd edn. John Wiley and Sons, New JerseyCrossRef Hosmer DW, Lemeshow S, May S (2008) Applied survival analysis: regression modeling of time-to-event data, 2nd edn. John Wiley and Sons, New JerseyCrossRef
3.
Zurück zum Zitat Klein JP, Moeschberger ML (2003) Survival analysis—techniques for censored and truncated data. Second edition statistics for biology and health, Springer, Berlin Klein JP, Moeschberger ML (2003) Survival analysis—techniques for censored and truncated data. Second edition statistics for biology and health, Springer, Berlin
6.
Zurück zum Zitat Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Springer, SingaporeCrossRef Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Springer, SingaporeCrossRef
7.
Zurück zum Zitat Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
8.
Zurück zum Zitat Lee ET, Wang JW (2003) Statistical methods for survival data analysis, 3rd edn. Wiley, New YorkCrossRef Lee ET, Wang JW (2003) Statistical methods for survival data analysis, 3rd edn. Wiley, New YorkCrossRef
13.
Zurück zum Zitat Cox DR, Oakes D (1984) Analysis of survival data. Chapman and Hall, London Cox DR, Oakes D (1984) Analysis of survival data. Chapman and Hall, London
14.
Zurück zum Zitat Asar O, Ritchie J, Kalra PA, Diggle PJ (2015) Joint modelling of repeated measurement and time-to-event data: an introductory tutorial. Int J Epidemiol 44(1):334–344CrossRef Asar O, Ritchie J, Kalra PA, Diggle PJ (2015) Joint modelling of repeated measurement and time-to-event data: an introductory tutorial. Int J Epidemiol 44(1):334–344CrossRef
17.
Zurück zum Zitat Molenberghs G, Verbeke G (2005) Models for discrete longitudinal data. Springer, New York Molenberghs G, Verbeke G (2005) Models for discrete longitudinal data. Springer, New York
24.
Zurück zum Zitat Rizopoulos D (2012) joint models for longitudinal and time-to-event data, with applications in R. Chapman & Hall/CRC, Boca RatonCrossRef Rizopoulos D (2012) joint models for longitudinal and time-to-event data, with applications in R. Chapman & Hall/CRC, Boca RatonCrossRef
26.
Zurück zum Zitat Wienke A (2011) Frailty models in survival analysis. Chapman & Hall/CRC, Boca Raton Wienke A (2011) Frailty models in survival analysis. Chapman & Hall/CRC, Boca Raton
27.
Zurück zum Zitat McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, LondonCrossRef McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, LondonCrossRef
28.
Zurück zum Zitat Agresti A (2015) Foundations of linear and generalized linear models, 1st edn. Wiley Series in Probability and Statistics, New York Agresti A (2015) Foundations of linear and generalized linear models, 1st edn. Wiley Series in Probability and Statistics, New York
Metadaten
Titel
Analysis of the HIV/AIDS Data Using Joint Modeling of Longitudinal (k,l)-Inflated Count and Time to Event Data in Clinical Trials
verfasst von
Mojtaba Zeinali Najafabadi
Ehsan Bahrami Samani
Publikationsdatum
30.05.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00532-5