Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Strength of Materials 3/2012

01.05.2012 | Scientific and Technical Section

Analysis of the influence of type of stress state on radiation swelling and radiation creep of austenitic steels

verfasst von: B. Z. Margolin, A. I. Murashova, V. S. Neustroev

Erschienen in: Strength of Materials | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

We present some findings of the analysis of experimental data on the influence of the type of stress state on radiation swelling in austenitic steels. A constitutive equation has been derived which provides a description of the effect of triaxial stress state on swelling in austenitic steels allowing for the contributions of spherical and deviatoric stress components. The authors put forward a physical interpretation of the derived relationship between radiation swelling and stress state. The dependence of radiation creep on swelling has been defined more accurately taking into account the stress state. The values of the coefficients involved in the constitutive equation and radiation creep dependence have been determined.
Literatur
1.
Zurück zum Zitat N. V. Sharyi, V. P. Semishkin, V. A. Piminov, and Yu. G. Dragunov, Strength of Main Equipment and Piping of WWER Reactor Facilities [in Russian], Izd. AT, Moscow (2004). N. V. Sharyi, V. P. Semishkin, V. A. Piminov, and Yu. G. Dragunov, Strength of Main Equipment and Piping of WWER Reactor Facilities [in Russian], Izd. AT, Moscow (2004).
2.
Zurück zum Zitat G. B. Usynin and E. V. Kusmartsev, Fast-Neutron Reactors. Manual for Institutes of Higher Education [in Russian], Énergoatomizdat, Moscow (1985). G. B. Usynin and E. V. Kusmartsev, Fast-Neutron Reactors. Manual for Institutes of Higher Education [in Russian], Énergoatomizdat, Moscow (1985).
3.
Zurück zum Zitat B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “On radiation swelling and radiation embrittlement of austenitic steels. Part I. Experimental results,” Vopr. Materialoved., No. 2 (58), 89–98 (2009). B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “On radiation swelling and radiation embrittlement of austenitic steels. Part I. Experimental results,” Vopr. Materialoved., No. 2 (58), 89–98 (2009).
4.
Zurück zum Zitat B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “On radiation swelling and radiation embrittlement of austenitic steels. Part II. Physical and mechanical mechanisms of embrittlement,” Vopr. Materialoved., No. 2 (58), 99–111 (2009). B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “On radiation swelling and radiation embrittlement of austenitic steels. Part II. Physical and mechanical mechanisms of embrittlement,” Vopr. Materialoved., No. 2 (58), 99–111 (2009).
5.
Zurück zum Zitat B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “Embrittlement and fracture toughness of highly irradiated austenitic steels for vessel internals of WWER type reactors. Part 1. Relation between irradiation swelling and irradiation embrittlement. experimental results,” Strength Mater., 41, No. 6, 593–602 (2009). CrossRef B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “Embrittlement and fracture toughness of highly irradiated austenitic steels for vessel internals of WWER type reactors. Part 1. Relation between irradiation swelling and irradiation embrittlement. experimental results,” Strength Mater., 41, No. 6, 593–602 (2009). CrossRef
6.
Zurück zum Zitat B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “Embrittlement and fracture toughness of highly irradiated austenitic steels for vessel internals of WWER type reactors. Part 2. Relation between irradiation swelling and irradiation embrittlement. Physical and mechanical behavior,” Strength Mater., 42, No. 2, 144–153 (2010). CrossRef B. Z. Margolin, I. P. Kursevich, A. A. Sorokin, et al., “Embrittlement and fracture toughness of highly irradiated austenitic steels for vessel internals of WWER type reactors. Part 2. Relation between irradiation swelling and irradiation embrittlement. Physical and mechanical behavior,” Strength Mater., 42, No. 2, 144–153 (2010). CrossRef
7.
Zurück zum Zitat V. S. Neustroev and F. A. Garner, “Very high swelling and embrittlement observed in a Fe–18Cr–10Ni–Ti hexagonal fuel wrapper irradiated in the BOR-60 fast reactor,” Fusion Mater., 43, 109–122 (2007). V. S. Neustroev and F. A. Garner, “Very high swelling and embrittlement observed in a Fe–18Cr–10Ni–Ti hexagonal fuel wrapper irradiated in the BOR-60 fast reactor,” Fusion Mater., 43, 109–122 (2007).
8.
Zurück zum Zitat P. H. Dubuisson, J. L. Seran, and P. Soulat, “Irradiation embrittlement of reactors internals materials,” in: Effect of Irradiation on Water Reactors Internals (June 1997, Paris), AMES Report No. 11 (1997), Vol. 3, pp. 30–34. P. H. Dubuisson, J. L. Seran, and P. Soulat, “Irradiation embrittlement of reactors internals materials,” in: Effect of Irradiation on Water Reactors Internals (June 1997, Paris), AMES Report No. 11 (1997), Vol. 3, pp. 30–34.
9.
Zurück zum Zitat R. Bullough, M. H. Finnis, and M. Y. Wood, “A theory of irradiation creep and thermal creep by dislocation climb,” J. Nucl. Mater., 103-104, No. 1-3, 1263–1268 (1981). CrossRef R. Bullough, M. H. Finnis, and M. Y. Wood, “A theory of irradiation creep and thermal creep by dislocation climb,” J. Nucl. Mater., 103-104, No. 1-3, 1263–1268 (1981). CrossRef
10.
Zurück zum Zitat J. F. Bates and E. R. Gilbert, “Experimental evidence for stress enhanced swelling,” J. Nucl. Mater., 59, No. 2, 95–102 (1976). CrossRef J. F. Bates and E. R. Gilbert, “Experimental evidence for stress enhanced swelling,” J. Nucl. Mater., 59, No. 2, 95–102 (1976). CrossRef
11.
Zurück zum Zitat J. E. Flinn, G. L. McVay, and L. C. Walters, “In-reactor deformation of solution annealed type 304 L stainless steel,” J. Nucl. Mater., 65, No. 3, 210–223 (1977). CrossRef J. E. Flinn, G. L. McVay, and L. C. Walters, “In-reactor deformation of solution annealed type 304 L stainless steel,” J. Nucl. Mater., 65, No. 3, 210–223 (1977). CrossRef
12.
Zurück zum Zitat J. F. Bates and E. R. Gilbert, “Effects of stress on swelling in 316 stainless steel,” J. Nucl. Mater., 71, 286–292 (1978). CrossRef J. F. Bates and E. R. Gilbert, “Effects of stress on swelling in 316 stainless steel,” J. Nucl. Mater., 71, 286–292 (1978). CrossRef
13.
Zurück zum Zitat F. A. Garner, E. R. Gilbert, and D. L. Porter, “Stress-enhanced swelling of metals during irradiation,” in: ASTM STP 725 (1981), pp. 680–697. F. A. Garner, E. R. Gilbert, and D. L. Porter, “Stress-enhanced swelling of metals during irradiation,” in: ASTM STP 725 (1981), pp. 680–697.
14.
Zurück zum Zitat F. A. Garner, “Irradiation performance of cladding and structural steels in liquid metal reactors,” in: Materials Science and Technology: A Comprehensive Treatment, VCH Publishers (1994), Vol. 10A, pp. 419– 543. F. A. Garner, “Irradiation performance of cladding and structural steels in liquid metal reactors,” in: Materials Science and Technology: A Comprehensive Treatment, VCH Publishers (1994), Vol. 10A, pp. 419– 543.
15.
Zurück zum Zitat V. S. Neustroev, Z. E. Ostrovskii, and V. K. Shamardin, “The influence of stresses on the radiation swelling and parameters of vacancy porosity parameters of neutron-irradiated austenitic steels,” Fiz. Metal. Metalloved., 86, Issue 1, 115–125 (1998). V. S. Neustroev, Z. E. Ostrovskii, and V. K. Shamardin, “The influence of stresses on the radiation swelling and parameters of vacancy porosity parameters of neutron-irradiated austenitic steels,” Fiz. Metal. Metalloved., 86, Issue 1, 115–125 (1998).
16.
Zurück zum Zitat K. Ehrlich, “Irradiation creep and interrelation with swelling in austenitic stainless steels,” J. Nucl. Mater., 100, No. 1-3, 149–166 (1981). CrossRef K. Ehrlich, “Irradiation creep and interrelation with swelling in austenitic stainless steels,” J. Nucl. Mater., 100, No. 1-3, 149–166 (1981). CrossRef
17.
Zurück zum Zitat D. L. Porter, M. L. Takata, and E. L. Wood, “Direct evidence for stress-enhanced swelling in type 316 stainless steel,” J. Nucl. Mater., 116, No. 2-3, 272–276 (1983). CrossRef D. L. Porter, M. L. Takata, and E. L. Wood, “Direct evidence for stress-enhanced swelling in type 316 stainless steel,” J. Nucl. Mater., 116, No. 2-3, 272–276 (1983). CrossRef
18.
Zurück zum Zitat R. Hübner and K. Ehrlich, “Swelling and in-pile creep of neutron irradiated 15Cr15NiTi austenitic steels in the temperature range of 400 to 600"C,” in: Proc. Technical Committee Meeting “ Influence of High Dose Irradiation on Core Structural and Fuel Materials in Advanced Reactors” (June 16–19, 1997, Obninsk), IAEA-TECDOC-1039 (1998), pp. 223–230. R. Hübner and K. Ehrlich, “Swelling and in-pile creep of neutron irradiated 15Cr15NiTi austenitic steels in the temperature range of 400 to 600"C,” in: Proc. Technical Committee Meeting “ Influence of High Dose Irradiation on Core Structural and Fuel Materials in Advanced Reactors” (June 16–19, 1997, Obninsk), IAEA-TECDOC-1039 (1998), pp. 223–230.
19.
Zurück zum Zitat C. Gawthorne and E. J. Fulton, “Voids in irradiated stainless steel,” Nature, 216, No. 5, 575–576 (1967). CrossRef C. Gawthorne and E. J. Fulton, “Voids in irradiated stainless steel,” Nature, 216, No. 5, 575–576 (1967). CrossRef
20.
Zurück zum Zitat S. D. Harkness and Yu-Li Che, “A model for void formation in metals irradiated in fast neutron environment,” in: Proc. IAEA Symp. “ Radiation Damage in Reactor Materials” (June 2–6, 1969, Vienna), IAEA (1969), Vol. 2, pp. 189–214. S. D. Harkness and Yu-Li Che, “A model for void formation in metals irradiated in fast neutron environment,” in: Proc. IAEA Symp. “ Radiation Damage in Reactor Materials” (June 2–6, 1969, Vienna), IAEA (1969), Vol. 2, pp. 189–214.
21.
Zurück zum Zitat A. D. Brailsford and R. Bullough, “The rate theory of swelling due to void growth in irradiated metals,” J. Nucl. Mater., 44, No. 2, 121–135 (1972). CrossRef A. D. Brailsford and R. Bullough, “The rate theory of swelling due to void growth in irradiated metals,” J. Nucl. Mater., 44, No. 2, 121–135 (1972). CrossRef
22.
Zurück zum Zitat Yu. V. Konobeev, A. V. Subbotin, and S. I. Golubov, “The theory of void and interstitial dislocation loop growth in irradiated metals,” Rad. Effects, 20, Issue 4, 265–271 (1973). CrossRef Yu. V. Konobeev, A. V. Subbotin, and S. I. Golubov, “The theory of void and interstitial dislocation loop growth in irradiated metals,” Rad. Effects, 20, Issue 4, 265–271 (1973). CrossRef
23.
Zurück zum Zitat Yu. V. Konobeev and V. A. Pechenkin, “On the mechanism of nucleation of vacancy voids in metals and under irradiation,” Vopr. Atom. Nauk. Tekhn., Ser. Fiz. Radiats. Povrezhd. Radiats. Materialoved., Issue 1, 3–7 (1978). Yu. V. Konobeev and V. A. Pechenkin, “On the mechanism of nucleation of vacancy voids in metals and under irradiation,” Vopr. Atom. Nauk. Tekhn., Ser. Fiz. Radiats. Povrezhd. Radiats. Materialoved., Issue 1, 3–7 (1978).
24.
Zurück zum Zitat T. T. Claudson, R. W. Barker, and R. L. Fish, “The effects of fast flax irradiation on the mechanical properties and dimensional stability of stainless steel,” Nucl. Appl. Technol., 9, 10–23 (1970). T. T. Claudson, R. W. Barker, and R. L. Fish, “The effects of fast flax irradiation on the mechanical properties and dimensional stability of stainless steel,” Nucl. Appl. Technol., 9, 10–23 (1970).
25.
Zurück zum Zitat J. P. Foster and R. V. Strain, “Empirical swelling equations for solution annealed type 304 stainless steel,” Nucl. Technol., 24, 93–98 (1974). J. P. Foster and R. V. Strain, “Empirical swelling equations for solution annealed type 304 stainless steel,” Nucl. Technol., 24, 93–98 (1974).
26.
Zurück zum Zitat J. F. Bates and J. L. Straalsund, “Empirical representation of radiation-induced swelling of solution treated type 304 stainless steel,” Nucl. Technol., 14, 292–298 (1972). J. F. Bates and J. L. Straalsund, “Empirical representation of radiation-induced swelling of solution treated type 304 stainless steel,” Nucl. Technol., 14, 292–298 (1972).
27.
Zurück zum Zitat R. L. Fish, J. L. Straalsund, C. W. Hunter, and J. J. Holmes, “Swelling and tensile properties evolution of high-fluence EBR-II thimbles,” in: ASTM STP 529 (1973), pp. 149–164. R. L. Fish, J. L. Straalsund, C. W. Hunter, and J. J. Holmes, “Swelling and tensile properties evolution of high-fluence EBR-II thimbles,” in: ASTM STP 529 (1973), pp. 149–164.
28.
Zurück zum Zitat R. A. Weiner and A. Boltax, “Comparison of high-fluence swelling behavior of austenitic stainless steels,” in: ASTM STP 725 (1981), pp. 484–499. R. A. Weiner and A. Boltax, “Comparison of high-fluence swelling behavior of austenitic stainless steels,” in: ASTM STP 725 (1981), pp. 484–499.
29.
Zurück zum Zitat Yu. V. Konobeev and V. A. Pechenkin, “Current state of the theory of radiation voids in metals,” in: Radiation Defects in Metallic Crystals [in Russian], Nauka, Alma-Ata (1978), pp. 187–210. Yu. V. Konobeev and V. A. Pechenkin, “Current state of the theory of radiation voids in metals,” in: Radiation Defects in Metallic Crystals [in Russian], Nauka, Alma-Ata (1978), pp. 187–210.
30.
Zurück zum Zitat V. N. Karaulov, A. P. Blynski, I. L. Yakovlev, and E. V. Kononova, “Assemblies and fuel pin behavior under irradiation in FBR-350,” in: Proc. Technical Committee Meeting “ Influence of High Dose Irradiation on Core Structural and Fuel Materials in Advanced Reactors” (June 16–19, 1997, Obninsk), IAEA-TECDOC-1039 (1998), pp. 93–105. V. N. Karaulov, A. P. Blynski, I. L. Yakovlev, and E. V. Kononova, “Assemblies and fuel pin behavior under irradiation in FBR-350,” in: Proc. Technical Committee Meeting “ Influence of High Dose Irradiation on Core Structural and Fuel Materials in Advanced Reactors” (June 16–19, 1997, Obninsk), IAEA-TECDOC-1039 (1998), pp. 93–105.
31.
Zurück zum Zitat V. S. Neustroev, Z. E. Ostrovskii, V. K. Shamardin, and V. V. Yakovlev, “Experimental investigations of destruction of irradiated hexahedral fue assembly wrappers of the BOR-60 reactor,” in: Collected Papers of the Vth Inter-Branch Conference on Reactor Material Science (September 8–12, 1997, Dimitrovgrad) [in Russia], Dimitrovgrad (1998), Vol. 2, Part 2, pp. 42–66. V. S. Neustroev, Z. E. Ostrovskii, V. K. Shamardin, and V. V. Yakovlev, “Experimental investigations of destruction of irradiated hexahedral fue assembly wrappers of the BOR-60 reactor,” in: Collected Papers of the Vth Inter-Branch Conference on Reactor Material Science (September 8–12, 1997, Dimitrovgrad) [in Russia], Dimitrovgrad (1998), Vol. 2, Part 2, pp. 42–66.
32.
Zurück zum Zitat E. E. Bloom, J. O. Stiegler, and C. J. McHargue, “Radiation damage in annealed type 304 stainless steel,” Rad. Effects, 14, No. 3-4, 231–243 (1972). E. E. Bloom, J. O. Stiegler, and C. J. McHargue, “Radiation damage in annealed type 304 stainless steel,” Rad. Effects, 14, No. 3-4, 231–243 (1972).
33.
Zurück zum Zitat V. N. Bykov and Yu. V. Konobeev, “Radiation damage in structural materials of fast reactors,” Atom. Énerg., 43, Issue 1, 20–27 (1977). V. N. Bykov and Yu. V. Konobeev, “Radiation damage in structural materials of fast reactors,” Atom. Énerg., 43, Issue 1, 20–27 (1977).
34.
Zurück zum Zitat N. K. Vasina, B. Z. Margolin, A. G. Gulenko, and I. P. Kursevich, “Irradiation swelling of austenitic stainless steels. The influence of various factors. Processing of experimental data and formulation of constitutive equations,” Vopr. Materialoved., No. 4 (48), 69–89 (2006). N. K. Vasina, B. Z. Margolin, A. G. Gulenko, and I. P. Kursevich, “Irradiation swelling of austenitic stainless steels. The influence of various factors. Processing of experimental data and formulation of constitutive equations,” Vopr. Materialoved., No. 4 (48), 69–89 (2006).
35.
Zurück zum Zitat D. L. Porter and F. A. Garner, “Swelling of AISI type 304 L stainless steel in response to simultaneous variation in stress and displacement rate,” in: Proc. 12th Int. Symp. “ Effects of Radiation on Materials,” ASTM 870 (1985), pp. 212–220. D. L. Porter and F. A. Garner, “Swelling of AISI type 304 L stainless steel in response to simultaneous variation in stress and displacement rate,” in: Proc. 12th Int. Symp. “ Effects of Radiation on Materials,” ASTM 870 (1985), pp. 212–220.
36.
Zurück zum Zitat H. K. Sahu and P. Yung, “Void swelling and irradiation creep in stainless steel under compressive and tensile stress,” J. Nucl. Mater., 136, No. 2-3, 154–158 (1985). CrossRef H. K. Sahu and P. Yung, “Void swelling and irradiation creep in stainless steel under compressive and tensile stress,” J. Nucl. Mater., 136, No. 2-3, 154–158 (1985). CrossRef
37.
Zurück zum Zitat T. Lauritzen, S. Vaidyanathan, W. L. Bell, and W. J. S. Yang, “Irradiation-induced swelling in AISI 316 steel: Effect of tensile and compressive stresses,” in: Proc. 13th Int. Symp. “ Radiation-Induced Changes in Microstructure,” ASTM STP 955 (1987), pp. 101–113. T. Lauritzen, S. Vaidyanathan, W. L. Bell, and W. J. S. Yang, “Irradiation-induced swelling in AISI 316 steel: Effect of tensile and compressive stresses,” in: Proc. 13th Int. Symp. “ Radiation-Induced Changes in Microstructure,” ASTM STP 955 (1987), pp. 101–113.
38.
Zurück zum Zitat M. M. Hall, Jr., and J. E. Flinn, “Stress state dependence of in-rector creep and swelling. Pt. II: Experimental results,” J. Nucl. Mater., 396, 119–129 (2010). CrossRef M. M. Hall, Jr., and J. E. Flinn, “Stress state dependence of in-rector creep and swelling. Pt. II: Experimental results,” J. Nucl. Mater., 396, 119–129 (2010). CrossRef
39.
Zurück zum Zitat M. M. Hall, Jr., “Stress state dependence of in-rector creep and swelling. Pt. I: Continuum plasticity model,” J. Nucl. Mater., 396, 112–118 (2010). CrossRef M. M. Hall, Jr., “Stress state dependence of in-rector creep and swelling. Pt. I: Continuum plasticity model,” J. Nucl. Mater., 396, 112–118 (2010). CrossRef
40.
Zurück zum Zitat D. Hull and D. E. Rimmer, “The growth of grain-boundary voids under stress,” Phil. Mag., 4, 673–680 (1959). CrossRef D. Hull and D. E. Rimmer, “The growth of grain-boundary voids under stress,” Phil. Mag., 4, 673–680 (1959). CrossRef
41.
Zurück zum Zitat M. V. Speight and W. Beere, “Vacancy potential and void growth on grain boundaries,” Metal. Sci., 9, 180–191 (1975). M. V. Speight and W. Beere, “Vacancy potential and void growth on grain boundaries,” Metal. Sci., 9, 180–191 (1975).
42.
Zurück zum Zitat I. W. Chen and A. S. Argon, “Diffusive growth of grain-boundary cavities,” Acta Met., 29, 1759–1768 (1981). CrossRef I. W. Chen and A. S. Argon, “Diffusive growth of grain-boundary cavities,” Acta Met., 29, 1759–1768 (1981). CrossRef
43.
Zurück zum Zitat A. Needleman and J. R. Rice, “Plastic creep flow effect in diffusive cavitation of grain boundaries,” Acta Met., 28, 1315–1332 (1980). CrossRef A. Needleman and J. R. Rice, “Plastic creep flow effect in diffusive cavitation of grain boundaries,” Acta Met., 28, 1315–1332 (1980). CrossRef
44.
Zurück zum Zitat A. N. Vorobjev, N. I. Budylkin, et al., “Irradiation creep and stress-enhanced swelling of Fe–16Cr–15Ni–Nb austenitic stainless steel in BN-350,” J. Nucl. Mater., 258-263, 1618–1622 (1998). CrossRef A. N. Vorobjev, N. I. Budylkin, et al., “Irradiation creep and stress-enhanced swelling of Fe–16Cr–15Ni–Nb austenitic stainless steel in BN-350,” J. Nucl. Mater., 258-263, 1618–1622 (1998). CrossRef
45.
Zurück zum Zitat Shamardin V. K., Neustroev V. S., Golovanov V. N., et al., “Irradiation creep and swelling of 0Kh16N15M3B and its modification 0Kh16N15M3BR steel,” in: Proc. 14 Int. Symp. “ Effects of Radiation on Materials,” ASTM STP 1046 (1990), pp. 753–765. Shamardin V. K., Neustroev V. S., Golovanov V. N., et al., “Irradiation creep and swelling of 0Kh16N15M3B and its modification 0Kh16N15M3BR steel,” in: Proc. 14 Int. Symp. “ Effects of Radiation on Materials,” ASTM STP 1046 (1990), pp. 753–765.
46.
Zurück zum Zitat L. M. Zabud’ko, Yu. I. Likhachev, and A. A. Proshkin, Availability of Fuel Assembly in Fast Reactors [in Russian], Énergoatomizdat, Moscow (1988). L. M. Zabud’ko, Yu. I. Likhachev, and A. A. Proshkin, Availability of Fuel Assembly in Fast Reactors [in Russian], Énergoatomizdat, Moscow (1988).
47.
Zurück zum Zitat V. S. Neustroev, Z. E. Ostrovsky, and V. K. Shamardin, “Experimental investigation of stress effect on swelling and microstructure of Fe–16Cr–15Ni–3Mo–Nb austenic stainless steel under low-temperature irradiation up to high damage dose in the BOR-60 reactor,” J. Nucl. Mater., 329-333, 119–129 (2004). V. S. Neustroev, Z. E. Ostrovsky, and V. K. Shamardin, “Experimental investigation of stress effect on swelling and microstructure of Fe–16Cr–15Ni–3Mo–Nb austenic stainless steel under low-temperature irradiation up to high damage dose in the BOR-60 reactor,” J. Nucl. Mater., 329-333, 119–129 (2004).
48.
Zurück zum Zitat P. T. Heald and M. V. Speight, “Steady-state irradiation creep,” Phil. Mag., 29, No. 5, 1075–1080 (1974). CrossRef P. T. Heald and M. V. Speight, “Steady-state irradiation creep,” Phil. Mag., 29, No. 5, 1075–1080 (1974). CrossRef
49.
Zurück zum Zitat J. H. Gittus, “Theory of dislocation-creep due to the Frenkel defects or interstitialcies produced by the bombardment with energetic particles creep,” Phil. Mag., 25, 345–354 (1972). CrossRef J. H. Gittus, “Theory of dislocation-creep due to the Frenkel defects or interstitialcies produced by the bombardment with energetic particles creep,” Phil. Mag., 25, 345–354 (1972). CrossRef
50.
Zurück zum Zitat W. G. Wolfer, M. Ashkin, and A. Boltax, “Creep and swelling deformation in structural materials during fast-neutron irradiation,” in: Properties of Reactor Structural Alloys after Neutron or Particle Irradiation, ASTM STP 570 (1975), pp. 233–258. W. G. Wolfer, M. Ashkin, and A. Boltax, “Creep and swelling deformation in structural materials during fast-neutron irradiation,” in: Properties of Reactor Structural Alloys after Neutron or Particle Irradiation, ASTM STP 570 (1975), pp. 233–258.
51.
Zurück zum Zitat J. P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York (1968). J. P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York (1968).
52.
Zurück zum Zitat K. C. Russell, “Nucleation of voids in irradiated materials,” Acta Met., 19, No. 8, 753–758 (1971). CrossRef K. C. Russell, “Nucleation of voids in irradiated materials,” Acta Met., 19, No. 8, 753–758 (1971). CrossRef
53.
Zurück zum Zitat H. Wiedersich, “On the theory of void formation during irradiation,” Rad. Effects, 12, 111 (1972). CrossRef H. Wiedersich, “On the theory of void formation during irradiation,” Rad. Effects, 12, 111 (1972). CrossRef
Metadaten
Titel
Analysis of the influence of type of stress state on radiation swelling and radiation creep of austenitic steels
verfasst von
B. Z. Margolin
A. I. Murashova
V. S. Neustroev
Publikationsdatum
01.05.2012
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 3/2012
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-012-9376-3

Weitere Artikel der Ausgabe 3/2012

Strength of Materials 3/2012 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.