Skip to main content

2024 | OriginalPaper | Buchkapitel

Analysis of the Influence of Tyre Cross-Sectional Parameters on the Stability of a Nonlinear Bicycle Model with Elliptic Toroidal Wheels

verfasst von : A. G. Agúndez, D. García-Vallejo, E. Freire

Erschienen in: Perspectives in Dynamical Systems I — Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the stability of a bicycle with elliptic toroidal wheels is analysed in detail. The influence of the tyre cross-sectional parameters on the self-stability velocity range of the steady forward motion is studied. The bicycle multibody model is based on a well-acknowledged bicycle benchmark, which has been extensively used in several works. The nonlinear equations of motion, constituting a Differential-Algebraic Equations (DAE) system, are derived and linearized along the steady forward motion. The robustness of the linearization approach allows obtaining the resulting Jacobian matrix as a function of the tyre cross-sectional parameters. Therefore, a sensitivity analysis of the eigenvalues with the wheels’ geometric parameters is performed. Different scenarios are considered, and the influence of the tori aspect ratios and the elliptic cross-sections are illustrated with various stability regions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Francis JohnWelsh Whipple. The stability of the motion of a bicycle. Quarterly Journal of Pure and Applied Mathematics, 30(120):312–321, 1899. Francis JohnWelsh Whipple. The stability of the motion of a bicycle. Quarterly Journal of Pure and Applied Mathematics, 30(120):312–321, 1899.
2.
Zurück zum Zitat Karl J Astrom, Richard E Klein, and Anders Lennartsson. Bicycle dynamics and control: adapted bicycles for education and research. IEEE Control Systems Magazine, 25(4):26–47, 2005. Karl J Astrom, Richard E Klein, and Anders Lennartsson. Bicycle dynamics and control: adapted bicycles for education and research. IEEE Control Systems Magazine, 25(4):26–47, 2005.
3.
Zurück zum Zitat David JN Limebeer and Robin S Sharp. Bicycles, motorcycles, and models. IEEE Control Systems Magazine, 26(5):34–61, 2006. David JN Limebeer and Robin S Sharp. Bicycles, motorcycles, and models. IEEE Control Systems Magazine, 26(5):34–61, 2006.
4.
Zurück zum Zitat Jaap P Meijaard, Jim M Papadopoulos, Andy Ruina, and Arend L Schwab. Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proceedings of the Royal society A: mathematical, physical and engineering sciences, 463(2084):1955–1982, 2007. Jaap P Meijaard, Jim M Papadopoulos, Andy Ruina, and Arend L Schwab. Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proceedings of the Royal society A: mathematical, physical and engineering sciences, 463(2084):1955–1982, 2007.
5.
Zurück zum Zitat Pradipta Basu-Mandal, Anindya Chatterjee, and Jim M Papadopoulos. Hands-free circular motions of a benchmark bicycle. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2084):1983–2003, 2007. Pradipta Basu-Mandal, Anindya Chatterjee, and Jim M Papadopoulos. Hands-free circular motions of a benchmark bicycle. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2084):1983–2003, 2007.
6.
Zurück zum Zitat José L Escalona and Antonio M Recuero. A bicycle model for education in multibody dynamics and real-time interactive simulation. Multibody System Dynamics, 27(3):383–402, 2012. José L Escalona and Antonio M Recuero. A bicycle model for education in multibody dynamics and real-time interactive simulation. Multibody System Dynamics, 27(3):383–402, 2012.
7.
Zurück zum Zitat Jiaming Xiong, Nannan Wang, and Caishan Liu. Stability analysis for the whipple bicycle dynamics. Multibody System Dynamics, 48(3):311–335, 2020.MathSciNetCrossRef Jiaming Xiong, Nannan Wang, and Caishan Liu. Stability analysis for the whipple bicycle dynamics. Multibody System Dynamics, 48(3):311–335, 2020.MathSciNetCrossRef
8.
Zurück zum Zitat JDG Kooijman, AL Schwab, and Jacob Philippus Meijaard. Experimental validation of a model of an uncontrolled bicycle. Multibody System Dynamics, 19(1–2):115–132, 2008. JDG Kooijman, AL Schwab, and Jacob Philippus Meijaard. Experimental validation of a model of an uncontrolled bicycle. Multibody System Dynamics, 19(1–2):115–132, 2008.
9.
Zurück zum Zitat Jiaming Xiong, Nannan Wang, and Caishan Liu. Bicycle dynamics and its circular solution on a revolution surface. Acta Mechanica Sinica, 36(1):220–233, 2020.MathSciNetCrossRef Jiaming Xiong, Nannan Wang, and Caishan Liu. Bicycle dynamics and its circular solution on a revolution surface. Acta Mechanica Sinica, 36(1):220–233, 2020.MathSciNetCrossRef
10.
Zurück zum Zitat JP Meijaard and AL Schwab. Linearized equations for an extended bicycle model. In III European Conference on Computational Mechanics, pages 772–772. Springer, 2006. JP Meijaard and AL Schwab. Linearized equations for an extended bicycle model. In III European Conference on Computational Mechanics, pages 772–772. Springer, 2006.
11.
Zurück zum Zitat AL Schwab, JP Meijaard, and JDG Kooijman. Some recent developments in bicycle dynamics. In Proceedings of the 12th World Congress in Mechanism and Machine Science, pages 1–6. Citeseer, 2007. AL Schwab, JP Meijaard, and JDG Kooijman. Some recent developments in bicycle dynamics. In Proceedings of the 12th World Congress in Mechanism and Machine Science, pages 1–6. Citeseer, 2007.
12.
Zurück zum Zitat Robin S Sharp. On the stability and control of the bicycle. Applied mechanics reviews, 61(6), 2008. Robin S Sharp. On the stability and control of the bicycle. Applied mechanics reviews, 61(6), 2008.
13.
Zurück zum Zitat Jason Keith Moore. Human control of a bicycle. University of California, Davis Davis, CA, 2012. Jason Keith Moore. Human control of a bicycle. University of California, Davis Davis, CA, 2012.
14.
Zurück zum Zitat Vera E Bulsink, Alberto Doria, Dorien van de Belt, and Bart Koopman. The effect of tyre and rider properties on the stability of a bicycle. Advances in mechanical engineering, 7(12):1687814015622596, 2015. Vera E Bulsink, Alberto Doria, Dorien van de Belt, and Bart Koopman. The effect of tyre and rider properties on the stability of a bicycle. Advances in mechanical engineering, 7(12):1687814015622596, 2015.
15.
Zurück zum Zitat A García-Agúndez, D García-Vallejo, and E Freire. Linearization approaches for general multibody systems validated through stability analysis of a benchmark bicycle model. Nonlinear Dynamics, Article in press (2020). A García-Agúndez, D García-Vallejo, and E Freire. Linearization approaches for general multibody systems validated through stability analysis of a benchmark bicycle model. Nonlinear Dynamics, Article in press (2020).
16.
Zurück zum Zitat José L Escalona and Rosario Chamorro. Stability analysis of vehicles on circular motions using multibody dynamics. Nonlinear Dynamics, 53(3):237–250, 2008. José L Escalona and Rosario Chamorro. Stability analysis of vehicles on circular motions using multibody dynamics. Nonlinear Dynamics, 53(3):237–250, 2008.
17.
Zurück zum Zitat Francisco González, Pierangelo Masarati, Javier Cuadrado, and Miguel A Naya. Assessment of linearization approaches for multibody dynamics formulations. Journal of Computational and Nonlinear Dynamics, 12(4), 2017. Francisco González, Pierangelo Masarati, Javier Cuadrado, and Miguel A Naya. Assessment of linearization approaches for multibody dynamics formulations. Journal of Computational and Nonlinear Dynamics, 12(4), 2017.
18.
Zurück zum Zitat Carmine M Pappalardo, Antonio Lettieri, and Domenico Guida. Stability analysis of rigid multibody mechanical systems with holonomic and nonholonomic constraints. Archive of Applied Mechanics, 2020. Carmine M Pappalardo, Antonio Lettieri, and Domenico Guida. Stability analysis of rigid multibody mechanical systems with holonomic and nonholonomic constraints. Archive of Applied Mechanics, 2020.
19.
Zurück zum Zitat Dale L Peterson, Gilbert Gede, and Mont Hubbard. Symbolic linearization of equations of motion of constrained multibody systems. Multibody System Dynamics, 33(2):143–161, 2015. Dale L Peterson, Gilbert Gede, and Mont Hubbard. Symbolic linearization of equations of motion of constrained multibody systems. Multibody System Dynamics, 33(2):143–161, 2015.
20.
Zurück zum Zitat A García-Agúndez, D García-Vallejo, and E Freire. Linearization approaches for general multibody systems validated through stability analysis of a benchmark bicycle model. Nonlinear Dynamics, 103(1):557–580, 2021.CrossRef A García-Agúndez, D García-Vallejo, and E Freire. Linearization approaches for general multibody systems validated through stability analysis of a benchmark bicycle model. Nonlinear Dynamics, 103(1):557–580, 2021.CrossRef
21.
Zurück zum Zitat Jaap P. Meijaard, Jim M. Papadopoulos, Andy Ruina, and Arend L. Schwab. Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2084):1955–1982, 2007.MathSciNetCrossRef Jaap P. Meijaard, Jim M. Papadopoulos, Andy Ruina, and Arend L. Schwab. Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2084):1955–1982, 2007.MathSciNetCrossRef
22.
Zurück zum Zitat Ahmed A Shabana and Jalil R Sany. An augmented formulation for mechanical systems with non-generalized coordinates: application to rigid body contact problems. Nonlinear dynamics, 24(2):183–204, 2001. Ahmed A Shabana and Jalil R Sany. An augmented formulation for mechanical systems with non-generalized coordinates: application to rigid body contact problems. Nonlinear dynamics, 24(2):183–204, 2001.
23.
Zurück zum Zitat W. Schiehlen. Multibody system dynamics: Roots and perspectives. Multibody System Dynamics, 1(2):149–188, 1997.MathSciNetCrossRef W. Schiehlen. Multibody system dynamics: Roots and perspectives. Multibody System Dynamics, 1(2):149–188, 1997.MathSciNetCrossRef
Metadaten
Titel
Analysis of the Influence of Tyre Cross-Sectional Parameters on the Stability of a Nonlinear Bicycle Model with Elliptic Toroidal Wheels
verfasst von
A. G. Agúndez
D. García-Vallejo
E. Freire
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-56492-5_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.