Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2020

07.04.2020

Analysis of the non-linearity of the heat transfer equation in case of a time-dependent heat source: application to the \(3\omega \) method

verfasst von: T. Ding, Y. Jannot, V. Schick, A. Degiovanni

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The \(3\omega \) method may be used to estimate the thermal conductivity of an electrically conducting wire. In this method, an alternating voltage with an angular frequency \(\omega \) is applied to the wire. The resulting low electrical tension \(U_{3\omega }\) of angular frequency \(3\omega \) that appears in the total electrical tension is extracted by a lock-in amplifier. The amplitude of \(U_{3\omega }\) is directly linked to the thermal conductivity of the wire and enables its estimation. All authors using the \(3\omega \) method for the determination of the thermal conductivity of an electric conducting wire considered that the heat flux produced by Joule effect in the wire is constant. This hypothesis leads to a linear form of the heat transfer equation. In this work, an analytical model taking into account the dependence of the heat flux on the temperature is developed, it leads to a non-linear form of the heat transfer equation. The importance of the non-linearity in certain cases is demonstrated and the analytical solution is used to define a unique criterion that must be verified to ensure the validity of the linear solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Corbino OM (1910) Thermal oscillations in lamps of thin fibers with alternating current flowing through them and the resulting effect on the rectifier as a result of the presence of even-numbered harmonics. Phys Z 11:413–417 Corbino OM (1910) Thermal oscillations in lamps of thin fibers with alternating current flowing through them and the resulting effect on the rectifier as a result of the presence of even-numbered harmonics. Phys Z 11:413–417
2.
Zurück zum Zitat Rosenthal LA (1961) Thermal response of bridewire used in electroexplosive devices. Rev Sci Instrum 32(9):1033–1036CrossRef Rosenthal LA (1961) Thermal response of bridewire used in electroexplosive devices. Rev Sci Instrum 32(9):1033–1036CrossRef
3.
Zurück zum Zitat Holland LR (1963) Physical properties of Titanium. III. The specific heat. J Appl Phys 34(8):2350–2357CrossRef Holland LR (1963) Physical properties of Titanium. III. The specific heat. J Appl Phys 34(8):2350–2357CrossRef
4.
Zurück zum Zitat Birge NO, Nagel SR (1985) Specific-heat spectroscopy of the glass transition. Phys Rev Lett 544(3):2674–2677CrossRef Birge NO, Nagel SR (1985) Specific-heat spectroscopy of the glass transition. Phys Rev Lett 544(3):2674–2677CrossRef
5.
Zurück zum Zitat Birge NO, Nagel SR (1987) Wide-frequency specific heat spectrometer. Rev Sci Instrum 58(8):1464–1470CrossRef Birge NO, Nagel SR (1987) Wide-frequency specific heat spectrometer. Rev Sci Instrum 58(8):1464–1470CrossRef
6.
Zurück zum Zitat Birge NO, Dixon PK, Menon N (1997) Specific heat spectroscopy: origins status and applications of the \(3\omega \) method. Thermochim Acta 304(305):51–66CrossRef Birge NO, Dixon PK, Menon N (1997) Specific heat spectroscopy: origins status and applications of the \(3\omega \) method. Thermochim Acta 304(305):51–66CrossRef
7.
Zurück zum Zitat Frank R, Drach V, Fricke J (1993) Determination of thermal conductivity and specific heat by a combined \(3\omega \)/decay technique. Rev Sci Instrum 64(3):760–765CrossRef Frank R, Drach V, Fricke J (1993) Determination of thermal conductivity and specific heat by a combined \(3\omega \)/decay technique. Rev Sci Instrum 64(3):760–765CrossRef
8.
Zurück zum Zitat Cahill DG (1990) Thermal conductivity measurement from 30 to 750 K: the \(3\omega \) method. Rev Sci Instrum 61(1):802–808MathSciNetCrossRef Cahill DG (1990) Thermal conductivity measurement from 30 to 750 K: the \(3\omega \) method. Rev Sci Instrum 61(1):802–808MathSciNetCrossRef
9.
Zurück zum Zitat Cahill DG (1989) Thermal conductivity of thin films: measurements and understanding. Vacuum Sci Technol A 7(3):1259–1266CrossRef Cahill DG (1989) Thermal conductivity of thin films: measurements and understanding. Vacuum Sci Technol A 7(3):1259–1266CrossRef
10.
Zurück zum Zitat Lee S-M, Cahill DG (1997) Heat transport in thin dielectric film. J Appl Phys 81(6):2590–2595CrossRef Lee S-M, Cahill DG (1997) Heat transport in thin dielectric film. J Appl Phys 81(6):2590–2595CrossRef
11.
Zurück zum Zitat Lu L, Yi W, Zhang DL (2001) \(3\upomega \) method for specific heat and thermal conductivity measurements. Rev Sci Instrum 72(7):2996–3003CrossRef Lu L, Yi W, Zhang DL (2001) \(3\upomega \) method for specific heat and thermal conductivity measurements. Rev Sci Instrum 72(7):2996–3003CrossRef
12.
Zurück zum Zitat Dames C, Chen G (2005) \(1\upomega \), \(2\upomega \) and \(3\upomega \) methods for measurements of thermal properties. Rev Sci Instrum 76:124902CrossRef Dames C, Chen G (2005) \(1\upomega \), \(2\upomega \) and \(3\upomega \) methods for measurements of thermal properties. Rev Sci Instrum 76:124902CrossRef
13.
Zurück zum Zitat Wang ZL, Tang DW, Zhang WG (2007) Simultaneous measurements of the thermal conductivity, thermal capacity and thermal diffusivity of an individual carbon fiber. J Phys D: Appl Phys 40:4686–4690CrossRef Wang ZL, Tang DW, Zhang WG (2007) Simultaneous measurements of the thermal conductivity, thermal capacity and thermal diffusivity of an individual carbon fiber. J Phys D: Appl Phys 40:4686–4690CrossRef
14.
Zurück zum Zitat Bhatta RP, Annamalai S, Mohr RK, Brandys M, Pegg IL, Dutta B (2010) High temperature thermal conductivity of platinium microwire by \(3\upomega \) method. Rev Sci Instrum 81(11):114904CrossRef Bhatta RP, Annamalai S, Mohr RK, Brandys M, Pegg IL, Dutta B (2010) High temperature thermal conductivity of platinium microwire by \(3\upomega \) method. Rev Sci Instrum 81(11):114904CrossRef
15.
Zurück zum Zitat Huzel D, Reith H, Schmitt MC, Picht O, Müller S, Toimil-Molares ME, Völklein F (2011) Characterization and application of thermoelectric nanowires, Chap. 14. In: Hashim A (ed) Nanowires - implementations and applications. IntechOpen Huzel D, Reith H, Schmitt MC, Picht O, Müller S, Toimil-Molares ME, Völklein F (2011) Characterization and application of thermoelectric nanowires, Chap. 14. In: Hashim A (ed) Nanowires - implementations and applications. IntechOpen
16.
Zurück zum Zitat Kimling J, Martens S, Nielsch K (2011) Thermal conductivity measurements using \(1\upomega \) and \(3\upomega \) methods revisited for voltage-driven setups. Rev Sci Instrum 82:074903CrossRef Kimling J, Martens S, Nielsch K (2011) Thermal conductivity measurements using \(1\upomega \) and \(3\upomega \) methods revisited for voltage-driven setups. Rev Sci Instrum 82:074903CrossRef
17.
Zurück zum Zitat Choi TY, Poulikakos D, Tharian J, Sennhauser U (2005) Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-\(\upomega \) method. Appl Phys Lett 87:013108CrossRef Choi TY, Poulikakos D, Tharian J, Sennhauser U (2005) Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-\(\upomega \) method. Appl Phys Lett 87:013108CrossRef
18.
Zurück zum Zitat Bourgeois O, Fournier T, Chaussy J (2007) Measurement of the thermal conductance of silicon nanowires at low temperatures. Appl Phys 101(1):016104CrossRef Bourgeois O, Fournier T, Chaussy J (2007) Measurement of the thermal conductance of silicon nanowires at low temperatures. Appl Phys 101(1):016104CrossRef
19.
Zurück zum Zitat Moon J, Weaver K, Feng B, Chae HG, Kumar SZ, Balk JB, Peterson GP (2012) Thermal conductivity measurement of individual poly (ether ketone)/carbon nanotube fibers using a steady-state DC thermal bridge method. Rev Sci Instrum 83:1–3CrossRef Moon J, Weaver K, Feng B, Chae HG, Kumar SZ, Balk JB, Peterson GP (2012) Thermal conductivity measurement of individual poly (ether ketone)/carbon nanotube fibers using a steady-state DC thermal bridge method. Rev Sci Instrum 83:1–3CrossRef
20.
Zurück zum Zitat Depasse F, Grossel Ph, Trannoy N (2004) Probe temperature and output voltage calculation for the SThM in AC mode. Superlattice Microstruct 35:315–322CrossRef Depasse F, Grossel Ph, Trannoy N (2004) Probe temperature and output voltage calculation for the SThM in AC mode. Superlattice Microstruct 35:315–322CrossRef
21.
Zurück zum Zitat Xing C, Jensen C, Munro T, White B, Ban H, Chirtoc M (2014) Thermal property characterization of fine fibers by the \(3\upomega \) technique. Appl Therm Eng 71:589–595CrossRef Xing C, Jensen C, Munro T, White B, Ban H, Chirtoc M (2014) Thermal property characterization of fine fibers by the \(3\upomega \) technique. Appl Therm Eng 71:589–595CrossRef
22.
Zurück zum Zitat Hou J, Wang X, Vellelacheruvu P, Guo J, Liu C, Cheng HM (2006) Thermal characterization of single wall carbon nanotube bundle using the self-heating \(3\upomega \) technique. J Appl Phys 100:124314CrossRef Hou J, Wang X, Vellelacheruvu P, Guo J, Liu C, Cheng HM (2006) Thermal characterization of single wall carbon nanotube bundle using the self-heating \(3\upomega \) technique. J Appl Phys 100:124314CrossRef
23.
Zurück zum Zitat Duffy DG (2001) Green’s functions with applications. CRC Press, Boca Raton Duffy DG (2001) Green’s functions with applications. CRC Press, Boca Raton
Metadaten
Titel
Analysis of the non-linearity of the heat transfer equation in case of a time-dependent heat source: application to the method
verfasst von
T. Ding
Y. Jannot
V. Schick
A. Degiovanni
Publikationsdatum
07.04.2020
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2020
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-020-10040-z

Weitere Artikel der Ausgabe 1/2020

Journal of Engineering Mathematics 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.