Skip to main content
Erschienen in: Calcolo 3/2018

01.09.2018

Analysis of the SDFEM for singularly perturbed differential–difference equations

verfasst von: Li-Bin Liu, Haitao Leng, Guangqing Long

Erschienen in: Calcolo | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the stability and accuracy of a streamline diffusion finite element method (SDFEM) for the singularly perturbed differential–difference equation of convection term with a small shift is considered. With a special choice of the stabilization quadratic bubble function and by using the discrete Green’s function, the new method is shown to have an optimal second order in the sense that \(\Vert u-u_{h}\Vert _{\infty }\le C\inf \nolimits _{v_h\in V^h}\Vert u-v_{h}\Vert _{\infty }\), where \(u_{h}\) is the SDFEM approximation of the exact solution u in linear finite element space \(V_{h}\). At last, a second order uniform convergence result for the SDFEM is obtained. Numerical results are given to confirm the \(\varepsilon \)-uniform convergence rate of the nodal errors.
Literatur
1.
Zurück zum Zitat Longtin, A., Milton, J.: Complex oscillations in the human pupil light reflex with mixed and delayed feedback. Math. Biosci. 90, 183–199 (1988)MathSciNetCrossRef Longtin, A., Milton, J.: Complex oscillations in the human pupil light reflex with mixed and delayed feedback. Math. Biosci. 90, 183–199 (1988)MathSciNetCrossRef
2.
Zurück zum Zitat Mackey, M.C., Glass, L.: Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977)CrossRef Mackey, M.C., Glass, L.: Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977)CrossRef
3.
Zurück zum Zitat Wazewska-Czyzewska, M., Lasota, A.: Mathematical models of the red cell system. Mat. Stos. 6, 25–40 (1976) Wazewska-Czyzewska, M., Lasota, A.: Mathematical models of the red cell system. Mat. Stos. 6, 25–40 (1976)
4.
Zurück zum Zitat Derstine, M.W., Gibbs, H.M., Kaplan, D.L.: Bifurcation gap in a hybrid optical system. Phys. Rev. A 26, 3720–3722 (1982)CrossRef Derstine, M.W., Gibbs, H.M., Kaplan, D.L.: Bifurcation gap in a hybrid optical system. Phys. Rev. A 26, 3720–3722 (1982)CrossRef
5.
Zurück zum Zitat Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equation. SIAM J. Appl. Math. 42, 502–531 (1982)MathSciNetCrossRef Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equation. SIAM J. Appl. Math. 42, 502–531 (1982)MathSciNetCrossRef
6.
Zurück zum Zitat Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equations. V. Small shifts with layer behavior. SIAM J. Appl. Math. 54, 249–272 (1994)MathSciNetCrossRef Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equations. V. Small shifts with layer behavior. SIAM J. Appl. Math. 54, 249–272 (1994)MathSciNetCrossRef
7.
Zurück zum Zitat Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equations. VI. Small shifts with rapid oscillations. SIAM J. Appl. Math. 54, 273–283 (1994)MathSciNetCrossRef Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equations. VI. Small shifts with rapid oscillations. SIAM J. Appl. Math. 54, 273–283 (1994)MathSciNetCrossRef
8.
Zurück zum Zitat Amiraliyeva, I.G., Erdogan, F., Amiraliyev, G.M.: A uniform numerical method for dealing with a singularly perturbed delay initial value problem. Appl. Math. Lett. 23, 1221–1225 (2010)MathSciNetCrossRef Amiraliyeva, I.G., Erdogan, F., Amiraliyev, G.M.: A uniform numerical method for dealing with a singularly perturbed delay initial value problem. Appl. Math. Lett. 23, 1221–1225 (2010)MathSciNetCrossRef
9.
Zurück zum Zitat Zarin, H.: On discontinuous Galerkin finite element method for singularly perturbed delay differential equations. Appl. Math. Lett. 38, 27–32 (2014)MathSciNetCrossRef Zarin, H.: On discontinuous Galerkin finite element method for singularly perturbed delay differential equations. Appl. Math. Lett. 38, 27–32 (2014)MathSciNetCrossRef
10.
Zurück zum Zitat Avudai Selvi, P., Ramanujam, N.: An iterative numerical method for singularly perturbed reaction–diffusion equations with negative shift. J. Comput. Appl. Math. 296, 10–23 (2016)MathSciNetCrossRef Avudai Selvi, P., Ramanujam, N.: An iterative numerical method for singularly perturbed reaction–diffusion equations with negative shift. J. Comput. Appl. Math. 296, 10–23 (2016)MathSciNetCrossRef
11.
Zurück zum Zitat Erdogan, F., Cen, Z.: A uniformly almost second-order convergent numerical method for singularly perturbed delay differential equations. J. Comput. Appl. Math. 333, 382–394 (2018)MathSciNetCrossRef Erdogan, F., Cen, Z.: A uniformly almost second-order convergent numerical method for singularly perturbed delay differential equations. J. Comput. Appl. Math. 333, 382–394 (2018)MathSciNetCrossRef
12.
Zurück zum Zitat Subburayan, V., Mahendran, : An \(\varepsilon \)-uniform numerical method for third singularly perturbed delay differential equations with discontinuous convection coefficient and source term. Appl. Math. Comput. 331, 404–415 (2018)MathSciNet Subburayan, V., Mahendran, : An \(\varepsilon \)-uniform numerical method for third singularly perturbed delay differential equations with discontinuous convection coefficient and source term. Appl. Math. Comput. 331, 404–415 (2018)MathSciNet
13.
Zurück zum Zitat Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)MathSciNetCrossRef Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)MathSciNetCrossRef
14.
Zurück zum Zitat Kadalbajoo, M.K., Ramesh, V.P.: Hybrid method for numerical solution of singulary perturbed delay differential equations. Appl. Math. Comput. 187, 797–814 (2007)MathSciNetMATH Kadalbajoo, M.K., Ramesh, V.P.: Hybrid method for numerical solution of singulary perturbed delay differential equations. Appl. Math. Comput. 187, 797–814 (2007)MathSciNetMATH
15.
Zurück zum Zitat Kadalbajoo, M.K., Ramesh, V.P.: Numerical methods on Shishkin mesh for singularly perturbed delay differential equations with a grid adaptaion strategy. Appl. Math. Comput. 188, 1816–1831 (2007)MathSciNetMATH Kadalbajoo, M.K., Ramesh, V.P.: Numerical methods on Shishkin mesh for singularly perturbed delay differential equations with a grid adaptaion strategy. Appl. Math. Comput. 188, 1816–1831 (2007)MathSciNetMATH
16.
Zurück zum Zitat Patidar, K.C., Sharma, K.K.: \(\varepsilon \)-Uniformly convergent non-stand finite difference methods for singularly perturbed differential difference equations with small delay. Appl. Math. Comput. 175, 864–890 (2006)MathSciNetMATH Patidar, K.C., Sharma, K.K.: \(\varepsilon \)-Uniformly convergent non-stand finite difference methods for singularly perturbed differential difference equations with small delay. Appl. Math. Comput. 175, 864–890 (2006)MathSciNetMATH
17.
Zurück zum Zitat Kadalbajoo, M.K., Kumar, D.: Fitted mesh \(B\)-spline collocation method for singularly perturbed differential–difference equations with small delay. Appl. Math. Comput. 204, 90–98 (2008)MathSciNetMATH Kadalbajoo, M.K., Kumar, D.: Fitted mesh \(B\)-spline collocation method for singularly perturbed differential–difference equations with small delay. Appl. Math. Comput. 204, 90–98 (2008)MathSciNetMATH
18.
Zurück zum Zitat Kadalbajoo, M.K., Kumar, D.: A computational method for singularly perturbed nonlinear differential–difference equations with small shift. Appl. Math. Model. 34, 2584–2596 (2010)MathSciNetCrossRef Kadalbajoo, M.K., Kumar, D.: A computational method for singularly perturbed nonlinear differential–difference equations with small shift. Appl. Math. Model. 34, 2584–2596 (2010)MathSciNetCrossRef
19.
Zurück zum Zitat Rao, R.N., Chakravarthy, R.P.: A finite difference method for singularly perturbed differential–difference equations with layer and oscillatory behavior. Appl. Math. Model. 37, 5743–5755 (2013)MathSciNetCrossRef Rao, R.N., Chakravarthy, R.P.: A finite difference method for singularly perturbed differential–difference equations with layer and oscillatory behavior. Appl. Math. Model. 37, 5743–5755 (2013)MathSciNetCrossRef
20.
Zurück zum Zitat Geng, F.Z., Qian, S.P., Cui, M.G.: Improved reproducing kernel method for singularly perturbed differential–difference equations with boundary layer behavior. Appl. Math. Comput. 252, 58–63 (2015)MathSciNetMATH Geng, F.Z., Qian, S.P., Cui, M.G.: Improved reproducing kernel method for singularly perturbed differential–difference equations with boundary layer behavior. Appl. Math. Comput. 252, 58–63 (2015)MathSciNetMATH
22.
Zurück zum Zitat Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (ed.) Finite Element Methods for Convection Dominated Flows, AMD, vol. 34. ASME, New York (1979) Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (ed.) Finite Element Methods for Convection Dominated Flows, AMD, vol. 34. ASME, New York (1979)
23.
24.
Zurück zum Zitat Linß, T., Stynes, M.: The SDFEM on Shishkin meshes for linear convection–diffusion problem. Numer. Math. 87, 457–484 (2001)MathSciNetCrossRef Linß, T., Stynes, M.: The SDFEM on Shishkin meshes for linear convection–diffusion problem. Numer. Math. 87, 457–484 (2001)MathSciNetCrossRef
25.
Zurück zum Zitat Roos, H.G., Zarin, H.: The streamline-diffusion method for a convection–diffusion problem with a point source. J. Comput. Appl. Math. 150, 109–128 (2003)MathSciNetCrossRef Roos, H.G., Zarin, H.: The streamline-diffusion method for a convection–diffusion problem with a point source. J. Comput. Appl. Math. 150, 109–128 (2003)MathSciNetCrossRef
26.
Zurück zum Zitat Stynes, M., Tobiska, L.: The SDFEM for a convection–diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal. 41, 1620–1642 (2003)MathSciNetCrossRef Stynes, M., Tobiska, L.: The SDFEM for a convection–diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal. 41, 1620–1642 (2003)MathSciNetCrossRef
27.
Zurück zum Zitat Sangalli, G.: Quasi optimality of the supg method for the one-dimensional advection–diffusion problem. SIAM J. Numer. Anal. 41, 1528–1542 (2003)MathSciNetCrossRef Sangalli, G.: Quasi optimality of the supg method for the one-dimensional advection–diffusion problem. SIAM J. Numer. Anal. 41, 1528–1542 (2003)MathSciNetCrossRef
28.
Zurück zum Zitat Chen, L., Xu, J.: Stability and accuracy of adapted finite element methods for singularly perturbed problems. Numer. Math. 109, 167–191 (2008)MathSciNetCrossRef Chen, L., Xu, J.: Stability and accuracy of adapted finite element methods for singularly perturbed problems. Numer. Math. 109, 167–191 (2008)MathSciNetCrossRef
29.
Zurück zum Zitat Chen, L., Xu, J.: An optimal streamline diffusion finite element method for a singularly perturbed problem. In: AMS Contemporary Mathematics Series: Rencent Advances in Adaptive Computation, vol. 383, pp. 236–246, HangZhou (2005) Chen, L., Xu, J.: An optimal streamline diffusion finite element method for a singularly perturbed problem. In: AMS Contemporary Mathematics Series: Rencent Advances in Adaptive Computation, vol. 383, pp. 236–246, HangZhou (2005)
30.
Zurück zum Zitat Chen, L., Wang, Y., Xu, J.: Stability of a streamline diffusion finite element method for turning point problems. J. Comput. Appl. Math. 220, 712–724 (2008)MathSciNetCrossRef Chen, L., Wang, Y., Xu, J.: Stability of a streamline diffusion finite element method for turning point problems. J. Comput. Appl. Math. 220, 712–724 (2008)MathSciNetCrossRef
31.
Zurück zum Zitat Celiker, F., Zhang, Z., Zhu, H.: Nodal superconvergence of SDFEM for singularly perturbed problems. J. Sci. Comput. 50, 405–433 (2012)MathSciNetCrossRef Celiker, F., Zhang, Z., Zhu, H.: Nodal superconvergence of SDFEM for singularly perturbed problems. J. Sci. Comput. 50, 405–433 (2012)MathSciNetCrossRef
32.
Zurück zum Zitat Zhang, J., Liu, X.: Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layer. Adv. Comput. Math. 43, 759–775 (2017)MathSciNetCrossRef Zhang, J., Liu, X.: Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layer. Adv. Comput. Math. 43, 759–775 (2017)MathSciNetCrossRef
33.
Zurück zum Zitat Liu, X., Zhang, J.: Analysis of the SDFEM in a streamline diffusion norm for singularly perturbed convection diffusion problems. Appl. Math. Lett. 69, 61–66 (2017)MathSciNetCrossRef Liu, X., Zhang, J.: Analysis of the SDFEM in a streamline diffusion norm for singularly perturbed convection diffusion problems. Appl. Math. Lett. 69, 61–66 (2017)MathSciNetCrossRef
35.
Zurück zum Zitat Sahihi, H., Abbasbandy, S., Allahviranloo, T.: Reproducing kernel method for solving singularly perturbed differential–difference equations with boundary layer behavior in Hilbert space. J. Comput. Appl. Math. 328, 30–43 (2018)MathSciNetCrossRef Sahihi, H., Abbasbandy, S., Allahviranloo, T.: Reproducing kernel method for solving singularly perturbed differential–difference equations with boundary layer behavior in Hilbert space. J. Comput. Appl. Math. 328, 30–43 (2018)MathSciNetCrossRef
36.
Zurück zum Zitat Geng, F.Z., Qian, S.P., Cui, M.G.: Improved reproducing kernel method for singularly perturbed differential–difference equations with boundary layer behavior. Appl. Math. Comput. 252, 58–63 (2015)MathSciNetMATH Geng, F.Z., Qian, S.P., Cui, M.G.: Improved reproducing kernel method for singularly perturbed differential–difference equations with boundary layer behavior. Appl. Math. Comput. 252, 58–63 (2015)MathSciNetMATH
38.
Zurück zum Zitat Mohapatra, J., Natesan, S.: Uniform convergence analysis of finite difference scheme for singularly perturbed delay differential equation on an adaptively generated grid. Numer. Math. Theory. Methods Appl. 3, 1–22 (2010)MathSciNetMATH Mohapatra, J., Natesan, S.: Uniform convergence analysis of finite difference scheme for singularly perturbed delay differential equation on an adaptively generated grid. Numer. Math. Theory. Methods Appl. 3, 1–22 (2010)MathSciNetMATH
39.
Zurück zum Zitat Andreev, V.B.: The green function and a priori estimates of solutions of monotone three-point singularly perturbed finite-difference schemes. Differ. Equ. 37, 923–933 (2001)MathSciNetCrossRef Andreev, V.B.: The green function and a priori estimates of solutions of monotone three-point singularly perturbed finite-difference schemes. Differ. Equ. 37, 923–933 (2001)MathSciNetCrossRef
40.
Zurück zum Zitat Linß, T.: Layer-adapted meshes for convectioni-diffusion problems. Comput. Methods Appl. Mech. Eng. 192, 1061–105 (2003)MathSciNetCrossRef Linß, T.: Layer-adapted meshes for convectioni-diffusion problems. Comput. Methods Appl. Mech. Eng. 192, 1061–105 (2003)MathSciNetCrossRef
41.
Zurück zum Zitat Qiu, Y., Sloan, D., Tang, T.: Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution: analysis of convergence. J. Comput. Appl. Math. 116, 121–143 (2000)MathSciNetCrossRef Qiu, Y., Sloan, D., Tang, T.: Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution: analysis of convergence. J. Comput. Appl. Math. 116, 121–143 (2000)MathSciNetCrossRef
42.
Zurück zum Zitat Chen, Y.: Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution. J. Comput. Appl. Math. 159, 25–34 (2003)MathSciNetCrossRef Chen, Y.: Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution. J. Comput. Appl. Math. 159, 25–34 (2003)MathSciNetCrossRef
43.
Zurück zum Zitat Chen, Y.: Uniform convergence analysis of finite difference approximations for singular perturbation problems. Adv. Comput. Math. 24, 197–212 (2006)MathSciNetCrossRef Chen, Y.: Uniform convergence analysis of finite difference approximations for singular perturbation problems. Adv. Comput. Math. 24, 197–212 (2006)MathSciNetCrossRef
44.
Zurück zum Zitat Kopteva, N., Stynes, M.: A robust adaptive method for quasi-linear one-dimensional convection diffusion problem. SIAM J. Numer. Anal. 39, 1446–1467 (2001)MathSciNetCrossRef Kopteva, N., Stynes, M.: A robust adaptive method for quasi-linear one-dimensional convection diffusion problem. SIAM J. Numer. Anal. 39, 1446–1467 (2001)MathSciNetCrossRef
Metadaten
Titel
Analysis of the SDFEM for singularly perturbed differential–difference equations
verfasst von
Li-Bin Liu
Haitao Leng
Guangqing Long
Publikationsdatum
01.09.2018
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 3/2018
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-018-0265-4

Weitere Artikel der Ausgabe 3/2018

Calcolo 3/2018 Zur Ausgabe