Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4-5/2011

01.07.2011

Analysis of Wire Position and Operating Conditions on Functioning of NiTi Wires for Shape Memory Actuators

verfasst von: C. Zanotti, P. Giuliani, S. Arnaboldi, A. Tuissi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4-5/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work an experimental-numerical approach was used to analyze the thermo-mechanical behavior of thin NiTi wires, electrically heated, finalized to defining the influence of both wire position and the operating conditions of the actuator functioning. Tests were carried out on wires having diameters of 80 and 150 μm, loaded by constant stresses of 100 and 200 MPa and characterized by DSC and strain/temperature hysteresis measurements. Two wire positions (horizontal and vertical) were adopted in single cycle tests and designed to obtain different typologies of the heating and cooling transients. In general, the heating time was selected to reach a steady state condition while the cooling time always allowed decreasing the wire temperature to the ambient one. Data concerning strain, applied current and voltage were simultaneously acquired during the tests. Moreover, for the optimization and validation of a numerical model, for the 150 μm wire in diameter was used, its temperature was recorded by IR thermographic system. On the basis of the collected experimental data, a simple model was tested to reproduce the experimental results and data regarding the heat exchange coefficient and wire electrical resistivity dependence on temperature were obtained. The influence of the experimental wire positioning and wire diameter on the free convection coefficient is reported and the results indicate that the heating transient is associated with different convection coefficients depending on the heating modalities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat K. Otsuka and C. Wayman, Mechanism of Shape Memory Effect and Superelasticity, Shape Memory Materials, K. Otsuka and C. Wayman, Ed., Cambridge University Press, Cambridge, 1998, p 27–48 K. Otsuka and C. Wayman, Mechanism of Shape Memory Effect and Superelasticity, Shape Memory Materials, K. Otsuka and C. Wayman, Ed., Cambridge University Press, Cambridge, 1998, p 27–48
2.
Zurück zum Zitat J. Van Humbeeck, Non Medical Applications of Shape Memory Alloys, Mater. Sci. Eng. A, 1999, 273–275, p 134–148CrossRef J. Van Humbeeck, Non Medical Applications of Shape Memory Alloys, Mater. Sci. Eng. A, 1999, 273–275, p 134–148CrossRef
3.
Zurück zum Zitat T. Duerig, A. Pelton, and D. Stockel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149CrossRef T. Duerig, A. Pelton, and D. Stockel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149CrossRef
4.
Zurück zum Zitat Y. Yeager, A Practical Shape Memory Electromechanical Actuator, Mech. Eng., 1984, 106, p 52–55 Y. Yeager, A Practical Shape Memory Electromechanical Actuator, Mech. Eng., 1984, 106, p 52–55
5.
Zurück zum Zitat A. Tuissi, P. Bassani, A. Mangioni, L. Toia, and F. Butera, Fabrication Process and Characterization of NiTi Wires for Actuators, Proceedings of SMST 2004, M. Mertmann, Ed., 2006, p 501–508 A. Tuissi, P. Bassani, A. Mangioni, L. Toia, and F. Butera, Fabrication Process and Characterization of NiTi Wires for Actuators, Proceedings of SMST 2004, M. Mertmann, Ed., 2006, p 501–508
6.
Zurück zum Zitat K. Ikuta, Micro/Miniature Shape Memory Alloy Actuator, Proceedings 1990 IEEE International Conference on Robotics and Automation, 1990, p 2156–2161 K. Ikuta, Micro/Miniature Shape Memory Alloy Actuator, Proceedings 1990 IEEE International Conference on Robotics and Automation, 1990, p 2156–2161
7.
Zurück zum Zitat A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, The High Potential of Shape Memory Alloys in Developing Miniature Mechanical Devices: A Review on Shape Memory Alloy Mini-Actuators, Sens. Actuators A, 2010, 158, p 149–160CrossRef A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, The High Potential of Shape Memory Alloys in Developing Miniature Mechanical Devices: A Review on Shape Memory Alloy Mini-Actuators, Sens. Actuators A, 2010, 158, p 149–160CrossRef
8.
Zurück zum Zitat M. Khol, Shape Memory Microactuators, Springer Book Series on Microtechnology and MEMS, 2004 M. Khol, Shape Memory Microactuators, Springer Book Series on Microtechnology and MEMS, 2004
9.
Zurück zum Zitat M. Mertmann and G. Vergani, Design and Application of Shape Memory Actuators, Eur. Phys. J. Spec. Top., 2008, 158, p 221–230CrossRef M. Mertmann and G. Vergani, Design and Application of Shape Memory Actuators, Eur. Phys. J. Spec. Top., 2008, 158, p 221–230CrossRef
10.
Zurück zum Zitat P. Wollants, M. De Bonte, L. Delaye, and J.R. Roos, Thermodynamical Analysis of the Work Performance of a Martensitic Transformation Under Stressed Conditions, Z. Metallk., 1979, 70, p 146 P. Wollants, M. De Bonte, L. Delaye, and J.R. Roos, Thermodynamical Analysis of the Work Performance of a Martensitic Transformation Under Stressed Conditions, Z. Metallk., 1979, 70, p 146
11.
Zurück zum Zitat E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, and X. Gao, Shape Memory Alloys, Part I: General Properties and Modeling of Single Crystals, Mech. Mater., 2006, 38(5–6), p 391–429CrossRef E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, and X. Gao, Shape Memory Alloys, Part I: General Properties and Modeling of Single Crystals, Mech. Mater., 2006, 38(5–6), p 391–429CrossRef
12.
Zurück zum Zitat D.C. Lagoudas, P.B. Entchev, P. Popov, E. Patoor, L.C. Brinson, and X. Gao, Shape Memory Alloys, Part II: Modeling of Polycrystals, Mech. Mater., 2006, 38(5–6), p 430–462CrossRef D.C. Lagoudas, P.B. Entchev, P. Popov, E. Patoor, L.C. Brinson, and X. Gao, Shape Memory Alloys, Part II: Modeling of Polycrystals, Mech. Mater., 2006, 38(5–6), p 430–462CrossRef
13.
Zurück zum Zitat A. Bhattacharyya, L. Sweeney, and M.G. Faulkner, Experimental Characterization of Free Convection During Thermal Phase Transformations in Shape Memory Alloy Wires, Smart Mater. Struct., 2002, 11, p 411–422CrossRef A. Bhattacharyya, L. Sweeney, and M.G. Faulkner, Experimental Characterization of Free Convection During Thermal Phase Transformations in Shape Memory Alloy Wires, Smart Mater. Struct., 2002, 11, p 411–422CrossRef
14.
Zurück zum Zitat M.A. Iadicola and J.A. Shaw, Rate and Thermal Sensitivities of Unstable Transformation Behavior in a Shape Memory Alloy, Int. J. Plast., 2004, 20, p 577–605CrossRef M.A. Iadicola and J.A. Shaw, Rate and Thermal Sensitivities of Unstable Transformation Behavior in a Shape Memory Alloy, Int. J. Plast., 2004, 20, p 577–605CrossRef
15.
Zurück zum Zitat H. Meier and L. Oelschlaeger, Numerical Thermomechanical Modelling of Shape Memory Alloy Wires, Mater. Sci. Eng. A, 2004, 378, p 484–489CrossRef H. Meier and L. Oelschlaeger, Numerical Thermomechanical Modelling of Shape Memory Alloy Wires, Mater. Sci. Eng. A, 2004, 378, p 484–489CrossRef
16.
Zurück zum Zitat B.-C. Chang, J.A. Shaw, and M.A. Iadicola, Thermodynamics of Shape Memory Alloy Wire: Modeling, Experiments, and Application, Continuum Mech. Thermodyn., 2006, 18, p 83–118CrossRef B.-C. Chang, J.A. Shaw, and M.A. Iadicola, Thermodynamics of Shape Memory Alloy Wire: Modeling, Experiments, and Application, Continuum Mech. Thermodyn., 2006, 18, p 83–118CrossRef
17.
Zurück zum Zitat H. Soul, A. Yawny, F.C. Lovey, and V. Torra, Thermal Effects in a Mechanical Model for Pseudoelastic Behavior of NiTi Wires, Mater. Res., 2007, 10(4), p 387–394CrossRef H. Soul, A. Yawny, F.C. Lovey, and V. Torra, Thermal Effects in a Mechanical Model for Pseudoelastic Behavior of NiTi Wires, Mater. Res., 2007, 10(4), p 387–394CrossRef
18.
Zurück zum Zitat P. Schlosser, D. Favier, H. Louche, and L. Orgéas, Experimental Characterization of NiTi SMAs Thermomechanical Behaviour Using Temperature and Strain Full-Field Measurements, Adv. Sci. Technol., 2008, 59, p 140–149CrossRef P. Schlosser, D. Favier, H. Louche, and L. Orgéas, Experimental Characterization of NiTi SMAs Thermomechanical Behaviour Using Temperature and Strain Full-Field Measurements, Adv. Sci. Technol., 2008, 59, p 140–149CrossRef
19.
Zurück zum Zitat J.F. Smith et al., The Heat Capacity of Solid Ni-Ti Alloys in the Temperature Range 120 to 800 K, J. Phase Equilb., 1993, 14(4), p 494–500CrossRef J.F. Smith et al., The Heat Capacity of Solid Ni-Ti Alloys in the Temperature Range 120 to 800 K, J. Phase Equilb., 1993, 14(4), p 494–500CrossRef
20.
Zurück zum Zitat C.O. Popiel, J. Wojtkowiak, and K. Bober, Laminar Free Convective Heat Transfer From Isothermal Vertical Slender Cylinder, Exp. Therm. Fluid Sci., 2007, 32, p 607–661CrossRef C.O. Popiel, J. Wojtkowiak, and K. Bober, Laminar Free Convective Heat Transfer From Isothermal Vertical Slender Cylinder, Exp. Therm. Fluid Sci., 2007, 32, p 607–661CrossRef
21.
Zurück zum Zitat K.A. Bucker and J. Majdalani, Effective Thermal Conductivity of Common Geometry Shapes, Int. J. Heat Mass Transf., 2005, 48(8), p 4779–4796CrossRef K.A. Bucker and J. Majdalani, Effective Thermal Conductivity of Common Geometry Shapes, Int. J. Heat Mass Transf., 2005, 48(8), p 4779–4796CrossRef
22.
Zurück zum Zitat C. Zanotti, P. Giuliani, A.Tuissi, S. Arnaboldi, and R. Casati, Response of NiTi SMA Wire Electrically Heated, ESOMAT 2009 - The 8th European Symposium on Martensitic Transformations, [N. 06037], P. Šittner, L. Heller, and V. Paidar, Eds., EDP Sciences, 2009, www.esomat.org, doi:10.1051/esomat/200906037 C. Zanotti, P. Giuliani, A.Tuissi, S. Arnaboldi, and R. Casati, Response of NiTi SMA Wire Electrically Heated, ESOMAT 2009 - The 8th European Symposium on Martensitic Transformations, [N. 06037], P. Šittner, L. Heller, and V. Paidar, Eds., EDP Sciences, 2009, www.​esomat.​org, doi:10.​1051/​esomat/​200906037
23.
Zurück zum Zitat M.G. Faulkner, J.J. Amalraj, and A. Bhattacharya, Experimental Determination of Thermal and Electrical Properties of Ni-Ti Shape Memory Wires, Smart Mater. Struct., 2000, 9, p 632–639CrossRef M.G. Faulkner, J.J. Amalraj, and A. Bhattacharya, Experimental Determination of Thermal and Electrical Properties of Ni-Ti Shape Memory Wires, Smart Mater. Struct., 2000, 9, p 632–639CrossRef
24.
Zurück zum Zitat V. Novak, P. Sittner, G.N. Dayananda, F.M. Braz-Fernandes, and K.K. Maheshc, Electric Resistance Variation of NiTi Shape Memory Alloy Wires in Thermomechanical Tests: Experiments and Simulation, Mater. Sci. Eng. A, 2008, 481–482, p 127–133CrossRef V. Novak, P. Sittner, G.N. Dayananda, F.M. Braz-Fernandes, and K.K. Maheshc, Electric Resistance Variation of NiTi Shape Memory Alloy Wires in Thermomechanical Tests: Experiments and Simulation, Mater. Sci. Eng. A, 2008, 481–482, p 127–133CrossRef
25.
Zurück zum Zitat A. Sala, Radiant Properties of Materials, Vol 21 of Physical Sciences Data, Elsevier, New York, 1986 A. Sala, Radiant Properties of Materials, Vol 21 of Physical Sciences Data, Elsevier, New York, 1986
Metadaten
Titel
Analysis of Wire Position and Operating Conditions on Functioning of NiTi Wires for Shape Memory Actuators
verfasst von
C. Zanotti
P. Giuliani
S. Arnaboldi
A. Tuissi
Publikationsdatum
01.07.2011
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4-5/2011
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-011-9886-3

Weitere Artikel der Ausgabe 4-5/2011

Journal of Materials Engineering and Performance 4-5/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.