Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Production Engineering 5-6/2020

08.09.2020 | Production Process

Analytical force modelling for micro milling additively fabricated Inconel 625

verfasst von: Andrea Abeni, Dario Loda, Tuğrul Özel, Aldo Attanasio

Erschienen in: Production Engineering | Ausgabe 5-6/2020

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In recent years, miniaturization of components has been concerned with several industrial fields including aerospace, energy, and electronics. This phenomenon resulted in increasing demand of micro-components with complex shape and high strength, often in high-temperature environment. Nickel-based superalloys such as Inconel 625 are a class of material suitable to aforementioned applications and can be successfully processed with Additive Manufacturing (AM). Moreover, micro-milling can be employed to manufacture micro-scale features on the additively fabricated parts or to achieve better surface finishes, as required for high-precision mechanical assemblies. In micro machining, it is possible to notice a lack of scientific study focusses on the material removal behavior of difficulty-to-cut alloys produced via Additive Manufacturing. This paper describes an analytical cutting force model suitable also for AM’d parts which considers the presence of ploughing- and shearing- dominated cutting regimes. A refinement procedure of the cutting force model was defined and applied by performing an experimental work on Inconel 625 samples fabricated by LaserCUSING™. A search algorithm was employed to develop an iterative methodology to determine the unknown cutting force model parameters. The model was successfully utilized to predict how the cutting force is affected as the process parameters change.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literatur
1.
Zurück zum Zitat Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392 CrossRef Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392 CrossRef
2.
Zurück zum Zitat DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2017) Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 92:112–224 CrossRef DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2017) Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 92:112–224 CrossRef
3.
Zurück zum Zitat Ma M, Wang Z, Gao M, Zeng X (2014) Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel. J Mater Process Technol 215:142–150 CrossRef Ma M, Wang Z, Gao M, Zeng X (2014) Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel. J Mater Process Technol 215:142–150 CrossRef
4.
Zurück zum Zitat Criales LE, Arisoy YM, Lane B, Moylan S, Donmez A, Özel T (2017) Laser powder bed fusion of nickel alloy 625: experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis. Int J Mach Tools Manuf 121:22–36 CrossRef Criales LE, Arisoy YM, Lane B, Moylan S, Donmez A, Özel T (2017) Laser powder bed fusion of nickel alloy 625: experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis. Int J Mach Tools Manuf 121:22–36 CrossRef
5.
Zurück zum Zitat Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137:1573–1587 CrossRef Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137:1573–1587 CrossRef
6.
Zurück zum Zitat Özel T, Altay A, Donmez A, Leach R (2018) Surface topography investigations on nickel alloy 625 fabricated via laser powder bed fusion. Int J Adv Manuf Technol 94(9–12):4451–4458 CrossRef Özel T, Altay A, Donmez A, Leach R (2018) Surface topography investigations on nickel alloy 625 fabricated via laser powder bed fusion. Int J Adv Manuf Technol 94(9–12):4451–4458 CrossRef
7.
Zurück zum Zitat Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann Manuf Technol 52(2):635–657 CrossRef Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann Manuf Technol 52(2):635–657 CrossRef
8.
Zurück zum Zitat Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann Manuf Technol 55(2):745–768 CrossRef Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann Manuf Technol 55(2):745–768 CrossRef
9.
Zurück zum Zitat Biermann D, Kahnis P (2010) Analysis and simulation of size effects in micromilling. Product Eng Res Dev 4(1):25–34 CrossRef Biermann D, Kahnis P (2010) Analysis and simulation of size effects in micromilling. Product Eng Res Dev 4(1):25–34 CrossRef
10.
Zurück zum Zitat Chrzanowski W, Neel EAA, Armitage DA, Knowles JC (2008) Effect of surface treatment on the bioactivity of nickel-titanium. Acta Biomater 4(6):1969–1984 CrossRef Chrzanowski W, Neel EAA, Armitage DA, Knowles JC (2008) Effect of surface treatment on the bioactivity of nickel-titanium. Acta Biomater 4(6):1969–1984 CrossRef
11.
Zurück zum Zitat Trosch T, Strößner J, Völkl R, Glatzel U (2016) Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater Lett 164(1):428–431 CrossRef Trosch T, Strößner J, Völkl R, Glatzel U (2016) Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater Lett 164(1):428–431 CrossRef
12.
Zurück zum Zitat Sharman ARC, Hughes JI, Ridgway K (2006) Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy. Mach Sci Technol 8(3):399–414 CrossRef Sharman ARC, Hughes JI, Ridgway K (2006) Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy. Mach Sci Technol 8(3):399–414 CrossRef
13.
Zurück zum Zitat Patel K, Fei J, Liu G, Özel T (2019) Milling investigations and yield strength calculations for nickel alloy Inconel 625 manufactured with laser powder bed fusion process. Prod Eng 13(6):693–702 CrossRef Patel K, Fei J, Liu G, Özel T (2019) Milling investigations and yield strength calculations for nickel alloy Inconel 625 manufactured with laser powder bed fusion process. Prod Eng 13(6):693–702 CrossRef
14.
Zurück zum Zitat Malekian M, Park SS, Jun MBG (2009) Modelling of dynamic micro-milling cutting forces. Int J Mach Tools Manuf 49(7–8):586–598 CrossRef Malekian M, Park SS, Jun MBG (2009) Modelling of dynamic micro-milling cutting forces. Int J Mach Tools Manuf 49(7–8):586–598 CrossRef
15.
Zurück zum Zitat Bissacco G, Hansen HN, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann Manuf Technol 57(1):113–116 CrossRef Bissacco G, Hansen HN, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann Manuf Technol 57(1):113–116 CrossRef
16.
Zurück zum Zitat Shi Z, Li Y, Liu Z, Qiao Z (2018) Determination of minimum uncut chip thickness during micro-end milling Inconel 718 with acoustic emission signals and FEM simulation. Int J Adv Manuf Technol 98(1–4):37–45 CrossRef Shi Z, Li Y, Liu Z, Qiao Z (2018) Determination of minimum uncut chip thickness during micro-end milling Inconel 718 with acoustic emission signals and FEM simulation. Int J Adv Manuf Technol 98(1–4):37–45 CrossRef
17.
Zurück zum Zitat Przestacki D, Chwalczuk T, Wojciechowski S (2017) The study on minimum uncut chip thickness and cutting forces during laser-assisted turning of WC/NiCr clad layers. Int J Adv Manuf Technol 91(9–12):3887–3898 CrossRef Przestacki D, Chwalczuk T, Wojciechowski S (2017) The study on minimum uncut chip thickness and cutting forces during laser-assisted turning of WC/NiCr clad layers. Int J Adv Manuf Technol 91(9–12):3887–3898 CrossRef
18.
Zurück zum Zitat Brandão F, Rodrigues AR, Coelho RT, Fagali A (2015) Size effect and minimum chip thickness in micromilling. Int J Mach Tools Manuf 89:39–54 CrossRef Brandão F, Rodrigues AR, Coelho RT, Fagali A (2015) Size effect and minimum chip thickness in micromilling. Int J Mach Tools Manuf 89:39–54 CrossRef
19.
Zurück zum Zitat Allegri G, Colpani A, Ginestra PS, Attanasio A (2019) An experimental study on micro-milling of a medical grade Co-Cr-Mo alloy produced by selective laser melting. Materials 12(13):1–12 Allegri G, Colpani A, Ginestra PS, Attanasio A (2019) An experimental study on micro-milling of a medical grade Co-Cr-Mo alloy produced by selective laser melting. Materials 12(13):1–12
20.
Zurück zum Zitat Malekian M, Mostofa MG, Park SS, Jun MBG (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Technol 212(3):553–559 CrossRef Malekian M, Mostofa MG, Park SS, Jun MBG (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Technol 212(3):553–559 CrossRef
21.
Zurück zum Zitat Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part I: analytical cutting force model. Int J Mach Tools Manuf 40:2155–2173 CrossRef Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part I: analytical cutting force model. Int J Mach Tools Manuf 40:2155–2173 CrossRef
22.
Zurück zum Zitat Zhou L, Peng FY, Yana R, Yao PF, Yang CC, Li B (2015) Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects. Int J Mach Tools Manuf 97:29–41 CrossRef Zhou L, Peng FY, Yana R, Yao PF, Yang CC, Li B (2015) Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects. Int J Mach Tools Manuf 97:29–41 CrossRef
23.
Zurück zum Zitat Zhang X, Ehmann KF, Yu T, Wang W (2016) Cutting forces in micro-end-milling processes. Int J Mach Tools Manuf 107:21–40 CrossRef Zhang X, Ehmann KF, Yu T, Wang W (2016) Cutting forces in micro-end-milling processes. Int J Mach Tools Manuf 107:21–40 CrossRef
24.
Zurück zum Zitat Shankar V, Bhanu Sankara Rao K, Mannan SL (2001) Microstructure and mechanical properties of Inconel 625 superalloy. J Nucl Mater 288:222–232 CrossRef Shankar V, Bhanu Sankara Rao K, Mannan SL (2001) Microstructure and mechanical properties of Inconel 625 superalloy. J Nucl Mater 288:222–232 CrossRef
25.
Zurück zum Zitat Özel T, Karpat Y (2007) Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms. Mater Manuf Process 22:659–667 CrossRef Özel T, Karpat Y (2007) Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms. Mater Manuf Process 22:659–667 CrossRef
26.
Zurück zum Zitat Özel T, Olleak A, Thepsonthi T (2017) Micro milling of titanium alloy Ti-6Al-4 V: 3-D finite element modeling for prediction of chip flow and burr formation. Prod Eng 11(4–5):435–444 CrossRef Özel T, Olleak A, Thepsonthi T (2017) Micro milling of titanium alloy Ti-6Al-4 V: 3-D finite element modeling for prediction of chip flow and burr formation. Prod Eng 11(4–5):435–444 CrossRef
27.
Zurück zum Zitat Attanasio A, Abeni A, Ceretti E, Özel T (2019) Finite element simulation of high speed micro milling in the presence of tool run-out with experimental validations. Int J Adv Manuf Technol 100(1–4):25–35 CrossRef Attanasio A, Abeni A, Ceretti E, Özel T (2019) Finite element simulation of high speed micro milling in the presence of tool run-out with experimental validations. Int J Adv Manuf Technol 100(1–4):25–35 CrossRef
28.
Zurück zum Zitat Srinivasa YV, Shunmugam MS (2013) Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. Int J Mach Tools Manuf 67:18–27 CrossRef Srinivasa YV, Shunmugam MS (2013) Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. Int J Mach Tools Manuf 67:18–27 CrossRef
29.
Zurück zum Zitat Attanasio A, Garbellini A, Ceretti E, Giardini C (2015) Force modelling in micromilling of channels. Int J Nanomanuf 11(5–6):275–296 CrossRef Attanasio A, Garbellini A, Ceretti E, Giardini C (2015) Force modelling in micromilling of channels. Int J Nanomanuf 11(5–6):275–296 CrossRef
30.
Zurück zum Zitat Moges TM, Desai KA, Rao PVM (2018) Modeling of cutting force, tool deflection, and surface error in micro-milling operation. Int J Adv Manuf Technol 98(9–12):2865–2881 CrossRef Moges TM, Desai KA, Rao PVM (2018) Modeling of cutting force, tool deflection, and surface error in micro-milling operation. Int J Adv Manuf Technol 98(9–12):2865–2881 CrossRef
31.
Zurück zum Zitat Gelfi M, Attanasio A, Ceretti E, Garbellini A, Pola A (2019) Micromilling of lamellar Ti6Al4V: cutting force analysis. Mater Manuf Process 31(7):919–925 CrossRef Gelfi M, Attanasio A, Ceretti E, Garbellini A, Pola A (2019) Micromilling of lamellar Ti6Al4V: cutting force analysis. Mater Manuf Process 31(7):919–925 CrossRef
32.
Zurück zum Zitat Vogler MP, Kapoor SG, DeVor RE (2004) On the modeling and analysis of machining performance in micro end milling, part II: cutting force prediction. ASME J Manuf Sci Eng 126(4):695–705 CrossRef Vogler MP, Kapoor SG, DeVor RE (2004) On the modeling and analysis of machining performance in micro end milling, part II: cutting force prediction. ASME J Manuf Sci Eng 126(4):695–705 CrossRef
33.
Zurück zum Zitat Rodríguez P, Labarga JE (2013) A new model for the prediction of cutting forces in micro-end-milling operations. J Mater Process Technol 213:261–268 CrossRef Rodríguez P, Labarga JE (2013) A new model for the prediction of cutting forces in micro-end-milling operations. J Mater Process Technol 213:261–268 CrossRef
34.
Zurück zum Zitat Chen W, Teng X, Huo D, Wang Q (2017) An improved cutting force model for micro milling considering machining dynamics. Int J Adv Manuf Technol 93(9–12):3005–3016 CrossRef Chen W, Teng X, Huo D, Wang Q (2017) An improved cutting force model for micro milling considering machining dynamics. Int J Adv Manuf Technol 93(9–12):3005–3016 CrossRef
35.
Zurück zum Zitat Zhang X, Yu T, Wang W (2018) Dynamic cutting force prediction for micro end milling considering tool vibrations and run-out. Proc Inst Mech Eng Part C J Mech Eng Sci 233(7):2248–2261 CrossRef Zhang X, Yu T, Wang W (2018) Dynamic cutting force prediction for micro end milling considering tool vibrations and run-out. Proc Inst Mech Eng Part C J Mech Eng Sci 233(7):2248–2261 CrossRef
36.
Zurück zum Zitat Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on IEEE. 1995:39-43 Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on IEEE. 1995:39-43
37.
Zurück zum Zitat Raja SB, Baskar N (2011) Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation. Int J Adv Manuf Technol 54(5–8):445–463 CrossRef Raja SB, Baskar N (2011) Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation. Int J Adv Manuf Technol 54(5–8):445–463 CrossRef
38.
Zurück zum Zitat Ciurana J, Arias G, Özel T (2009) Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Mater Manuf Process 24(3):358–368 CrossRef Ciurana J, Arias G, Özel T (2009) Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Mater Manuf Process 24(3):358–368 CrossRef
39.
Zurück zum Zitat Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: a review of mechanical properties. Annu Rev Materi Res 46:151–186 CrossRef Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: a review of mechanical properties. Annu Rev Materi Res 46:151–186 CrossRef
40.
Zurück zum Zitat Abeni A, Lancini M, Attanasio A (2019) Characterization of machine tools and measurement system for micromilling. Nanotechnol Precis Eng 2:23–28 CrossRef Abeni A, Lancini M, Attanasio A (2019) Characterization of machine tools and measurement system for micromilling. Nanotechnol Precis Eng 2:23–28 CrossRef
41.
Zurück zum Zitat Attanasio A, Abeni A, Özel T, Ceretti E (2018) Finite element simulation of high speed micro milling in the presence of tool run-out with experimental validations. Int J Adv Manuf Technol 100(1–4):25–35 Attanasio A, Abeni A, Özel T, Ceretti E (2018) Finite element simulation of high speed micro milling in the presence of tool run-out with experimental validations. Int J Adv Manuf Technol 100(1–4):25–35
42.
Zurück zum Zitat Lai X, Li H, Li C, Lin Z, Ni J (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48(1):1–14 CrossRef Lai X, Li H, Li C, Lin Z, Ni J (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48(1):1–14 CrossRef
Metadaten
Titel
Analytical force modelling for micro milling additively fabricated Inconel 625
verfasst von
Andrea Abeni
Dario Loda
Tuğrul Özel
Aldo Attanasio
Publikationsdatum
08.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Production Engineering / Ausgabe 5-6/2020
Print ISSN: 0944-6524
Elektronische ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-020-00980-x

Weitere Artikel der Ausgabe 5-6/2020

Production Engineering 5-6/2020 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.