Skip to main content
Erschienen in: Polymer Bulletin 5/2017

20.09.2016 | Original Paper

Analytical interpretation of mechanical response of green biocomposites based on poly(ε-caprolactone) and granular tapioca starch

verfasst von: Achla, S. N. Maiti, Josemon Jacob

Erschienen in: Polymer Bulletin | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work focuses on thermal, mechanical, and morphological properties of poly(ε-caprolactone) (PCL) on incorporation of granular tapioca starch (GTS). Biocomposites containing 0–35 wt% (Φf = 0–0.36) of the dispersed GTS phase were prepared by melt compounding in a twin screw extruder followed by microinjection molding. From the DSC measurements, sharp decrease in crystallinity was observed for all the compositions studied. The observed marginal decrease in onset degradation temperature suggests that the incorporation of GTS does not compromise thermal stability in PCL/GTS biocomposites. The maximum tensile modulus observed at Φf = 0.36 was 225.8 MPa, while a decrease in tensile yield strength with the value 12.44 MPa was observed. After eliminating the effect of crystallinity, these biocomposites showed ~4 times increase in tensile modulus and ~2 times increase in yield strength, whereas the impact properties decreased by 59 %. The enhancement in Young’s modulus was due to the mechanical restraint created by GTS particles which tend to decrease notched Izod impact strength by enhancing the stiffness of PCL. From SEM micrographs, homogeneous dispersion of GTS particles was observed in PCL matrix. Theoretical models were used to analyze tensile modulus and yield strength data for the estimation of various phase-adhesion parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ishiaku U, Pang K, Lee W, Ishak ZM (2002) Mechanical properties and enzymic degradation of thermoplastic and granular sago starch filled poly (ε-caprolactone). Eur Polymer J 38(2):393–401CrossRef Ishiaku U, Pang K, Lee W, Ishak ZM (2002) Mechanical properties and enzymic degradation of thermoplastic and granular sago starch filled poly (ε-caprolactone). Eur Polymer J 38(2):393–401CrossRef
2.
Zurück zum Zitat Avella M, Errico ME, Laurienzo P, Martuscelli E, Raimo M, Rimedio R (2000) Preparation and characterisation of compatibilised polycaprolactone/starch composites. Polymer 41(10):3875–3881CrossRef Avella M, Errico ME, Laurienzo P, Martuscelli E, Raimo M, Rimedio R (2000) Preparation and characterisation of compatibilised polycaprolactone/starch composites. Polymer 41(10):3875–3881CrossRef
3.
Zurück zum Zitat Salgado CL, Sanchez E, Mano J, Moraes A (2012) Characterization of chitosan and polycaprolactone membranes designed for wound repair application. J Mater Sci 47(2):659–667CrossRef Salgado CL, Sanchez E, Mano J, Moraes A (2012) Characterization of chitosan and polycaprolactone membranes designed for wound repair application. J Mater Sci 47(2):659–667CrossRef
4.
Zurück zum Zitat She H, Xiao X, Liu R (2007) Preparation and characterization of polycaprolactone–chitosan composites for tissue engineering applications. J Mater Sci 42(19):8113–8119CrossRef She H, Xiao X, Liu R (2007) Preparation and characterization of polycaprolactone–chitosan composites for tissue engineering applications. J Mater Sci 42(19):8113–8119CrossRef
5.
Zurück zum Zitat Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, Cristallini C, Giusti P (2005) Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6(4):1961–1976CrossRef Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, Cristallini C, Giusti P (2005) Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6(4):1961–1976CrossRef
6.
Zurück zum Zitat Ma X, Yu J, Zhao A (2006) Properties of biodegradable poly(propylene carbonate)/starch composites with succinic anhydride. Compos Sci Technol 66(13):2360–2366CrossRef Ma X, Yu J, Zhao A (2006) Properties of biodegradable poly(propylene carbonate)/starch composites with succinic anhydride. Compos Sci Technol 66(13):2360–2366CrossRef
7.
Zurück zum Zitat Yu F, Prashantha K, Soulestin J, Lacrampe M-F, Krawczak P (2013) Plasticized-starch/poly(ethylene oxide) blends prepared by extrusion. Carbohydr Polym 91(1):253–261CrossRef Yu F, Prashantha K, Soulestin J, Lacrampe M-F, Krawczak P (2013) Plasticized-starch/poly(ethylene oxide) blends prepared by extrusion. Carbohydr Polym 91(1):253–261CrossRef
8.
Zurück zum Zitat Averous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch–polycaprolactone. Polymer 41(11):4157–4167CrossRef Averous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch–polycaprolactone. Polymer 41(11):4157–4167CrossRef
9.
Zurück zum Zitat Al-Mulla EAJ, Yunus WMZW, Ibrahim NAB, Rahman MZA (2010) Properties of epoxidized palm oil plasticized polytlactic acid. J Mater Sci 45(7):1942–1946CrossRef Al-Mulla EAJ, Yunus WMZW, Ibrahim NAB, Rahman MZA (2010) Properties of epoxidized palm oil plasticized polytlactic acid. J Mater Sci 45(7):1942–1946CrossRef
10.
Zurück zum Zitat Avérous L, Fringant C (2001) Association between plasticized starch and polyesters: processing and performances of injected biodegradable systems. Polym Eng Sci 41(5):727–734CrossRef Avérous L, Fringant C (2001) Association between plasticized starch and polyesters: processing and performances of injected biodegradable systems. Polym Eng Sci 41(5):727–734CrossRef
11.
Zurück zum Zitat Sewda K, Maiti SN (2010) Crystallization and melting behavior of HDPE in HDPE/teak wood flour composites and their correlation with mechanical properties. J Appl Polym Sci 118(4):2264–2275 Sewda K, Maiti SN (2010) Crystallization and melting behavior of HDPE in HDPE/teak wood flour composites and their correlation with mechanical properties. J Appl Polym Sci 118(4):2264–2275
12.
Zurück zum Zitat Matzinos P, Tserki V, Gianikouris C, Pavlidou E, Panayiotou C (2002) Processing and characterization of LDPE/starch/PCL blends. Eur Polym J 38(9):1713–1720CrossRef Matzinos P, Tserki V, Gianikouris C, Pavlidou E, Panayiotou C (2002) Processing and characterization of LDPE/starch/PCL blends. Eur Polym J 38(9):1713–1720CrossRef
13.
Zurück zum Zitat Rosa DS, Guedes CGF, Pedroso AG, Calil MR (2004) The influence of starch gelatinization on the rheological, thermal, and morphological properties of poly(ɛ-caprolactone) with corn starch blends. Mater Sci Eng C 24(5):663–670CrossRef Rosa DS, Guedes CGF, Pedroso AG, Calil MR (2004) The influence of starch gelatinization on the rheological, thermal, and morphological properties of poly(ɛ-caprolactone) with corn starch blends. Mater Sci Eng C 24(5):663–670CrossRef
14.
Zurück zum Zitat Rosa DS, Lopes DR, Calil MR (2005) Thermal properties and enzymatic degradation of blends of poly(ε-caprolactone) with starches. Polym Test 24(6):756–761CrossRef Rosa DS, Lopes DR, Calil MR (2005) Thermal properties and enzymatic degradation of blends of poly(ε-caprolactone) with starches. Polym Test 24(6):756–761CrossRef
15.
Zurück zum Zitat Pérez CJ, Alvarez VA, Vázquez A (2008) Creep behaviour of layered silicate/starch–polycaprolactone blends nanocomposites. Mater Sci Eng A 480(1–2):259–265CrossRef Pérez CJ, Alvarez VA, Vázquez A (2008) Creep behaviour of layered silicate/starch–polycaprolactone blends nanocomposites. Mater Sci Eng A 480(1–2):259–265CrossRef
16.
Zurück zum Zitat Lee S-H, Ohkita T (2003) Mechanical and thermal flow properties of wood flour–biodegradable polymer composites. J Appl Polym Sci 90(7):1900–1905CrossRef Lee S-H, Ohkita T (2003) Mechanical and thermal flow properties of wood flour–biodegradable polymer composites. J Appl Polym Sci 90(7):1900–1905CrossRef
17.
Zurück zum Zitat Swapna Joseph C, Harish Prashanth KV, Rastogi NK, Indiramma AR, Yella Reddy S, Raghavarao KSMS (2011) Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food Bioprocess Technol 4(7):1179–1185CrossRef Swapna Joseph C, Harish Prashanth KV, Rastogi NK, Indiramma AR, Yella Reddy S, Raghavarao KSMS (2011) Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food Bioprocess Technol 4(7):1179–1185CrossRef
18.
Zurück zum Zitat Sivalingam G, Madras G (2003) Thermal degradation of poly (ε-caprolactone). Polym Degrad Stab 80(1):11–16CrossRef Sivalingam G, Madras G (2003) Thermal degradation of poly (ε-caprolactone). Polym Degrad Stab 80(1):11–16CrossRef
19.
Zurück zum Zitat Shin BY, Narayan R, Lee SI, Lee TJ (2008) Morphology and rheological properties of blends of chemically modified thermoplastic starch and polycaprolactone. Polym Eng Sci 48(11):2126–2133CrossRef Shin BY, Narayan R, Lee SI, Lee TJ (2008) Morphology and rheological properties of blends of chemically modified thermoplastic starch and polycaprolactone. Polym Eng Sci 48(11):2126–2133CrossRef
20.
Zurück zum Zitat Wu C-S (2004) Analysis of mechanical, thermal, and morphological behavior of polycaprolactone/wood flour blends. J Appl Polym Sci 94(3):1000–1006CrossRef Wu C-S (2004) Analysis of mechanical, thermal, and morphological behavior of polycaprolactone/wood flour blends. J Appl Polym Sci 94(3):1000–1006CrossRef
21.
Zurück zum Zitat Valdés García A, Ramos Santonja M, Sanahuja AB, Selva M (2014) Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polym Degrad Stab 108:269–279CrossRef Valdés García A, Ramos Santonja M, Sanahuja AB, Selva M (2014) Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polym Degrad Stab 108:269–279CrossRef
22.
Zurück zum Zitat Koenig MF, Huang SJ (1995) Biodegradable blends and composites of polycaprolactone and starch derivatives. Polymer 36(9):1877–1882CrossRef Koenig MF, Huang SJ (1995) Biodegradable blends and composites of polycaprolactone and starch derivatives. Polymer 36(9):1877–1882CrossRef
23.
Zurück zum Zitat Kim EG, Kim BS, Kim DS (2007) Physical properties and morphology of polycaprolactone/starch/pine-leaf composites. J Appl Polym Sci 103(2):928–934CrossRef Kim EG, Kim BS, Kim DS (2007) Physical properties and morphology of polycaprolactone/starch/pine-leaf composites. J Appl Polym Sci 103(2):928–934CrossRef
24.
Zurück zum Zitat Lu D, Xiao C, Xu S (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3(6):366–375CrossRef Lu D, Xiao C, Xu S (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3(6):366–375CrossRef
25.
Zurück zum Zitat Zhang YP, Lee SH, Reddy KR, Gopalan AI, Lee KP (2007) Synthesis and characterization of core-shell SiO2 nanoparticles/poly (3-aminophenylboronic acid) composites. J Appl Polym Sci 104(4):2743–2750CrossRef Zhang YP, Lee SH, Reddy KR, Gopalan AI, Lee KP (2007) Synthesis and characterization of core-shell SiO2 nanoparticles/poly (3-aminophenylboronic acid) composites. J Appl Polym Sci 104(4):2743–2750CrossRef
26.
Zurück zum Zitat Reddy KR, Lee K-P, Gopalan AI (2007) Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J Nanosci Nanotechnol 7(9):3117–3125CrossRef Reddy KR, Lee K-P, Gopalan AI (2007) Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J Nanosci Nanotechnol 7(9):3117–3125CrossRef
27.
Zurück zum Zitat Mikešová J, Šlouf M, Gohs U, Popelková D, Vacková T, Vu NH, Kratochvíl J, Zhigunov A (2014) Nanocomposites of polypropylene/titanate nanotubes: morphology, nucleation effects of nanoparticles and properties. Polym Bull 71(4):795–818CrossRef Mikešová J, Šlouf M, Gohs U, Popelková D, Vacková T, Vu NH, Kratochvíl J, Zhigunov A (2014) Nanocomposites of polypropylene/titanate nanotubes: morphology, nucleation effects of nanoparticles and properties. Polym Bull 71(4):795–818CrossRef
28.
Zurück zum Zitat Choi SH, Kim DH, Raghu AV, Reddy KR, Lee H-I, Yoon KS, Jeong HM, Kim BK (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Part B 51(1):197–207CrossRef Choi SH, Kim DH, Raghu AV, Reddy KR, Lee H-I, Yoon KS, Jeong HM, Kim BK (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Part B 51(1):197–207CrossRef
29.
Zurück zum Zitat Howarter JA, Youngblood JP (2007) Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes. Adv Mater 19(22):3838–3843CrossRef Howarter JA, Youngblood JP (2007) Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes. Adv Mater 19(22):3838–3843CrossRef
30.
Zurück zum Zitat Lee YR, Kim SC, H-i L, Jeong HM, Raghu AV, Reddy KR, Kim BK (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19(1):66–71CrossRef Lee YR, Kim SC, H-i L, Jeong HM, Raghu AV, Reddy KR, Kim BK (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19(1):66–71CrossRef
31.
Zurück zum Zitat Clark PD, Dowling NI, Huang M (2015) Role of Ti3+ in CS2 conversion over TiO2 Claus catalyst. Appl Catal A 489:111–116CrossRef Clark PD, Dowling NI, Huang M (2015) Role of Ti3+ in CS2 conversion over TiO2 Claus catalyst. Appl Catal A 489:111–116CrossRef
32.
Zurück zum Zitat Han SJ, Lee H-I, Jeong HM, Kim BK, Raghu AV, Reddy KR (2014) Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J Macromol Sci Part B 53(7):1193–1204CrossRef Han SJ, Lee H-I, Jeong HM, Kim BK, Raghu AV, Reddy KR (2014) Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J Macromol Sci Part B 53(7):1193–1204CrossRef
33.
Zurück zum Zitat Reddy KR, Sin BC, Ryu KS, Kim J-C, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159(7):595–603CrossRef Reddy KR, Sin BC, Ryu KS, Kim J-C, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159(7):595–603CrossRef
34.
Zurück zum Zitat Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI, Gomes VG (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8CrossRef Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI, Gomes VG (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8CrossRef
35.
Zurück zum Zitat Vertuccio L, Gorrasi G, Sorrentino A, Vittoria V (2009) Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym 75(1):172–179CrossRef Vertuccio L, Gorrasi G, Sorrentino A, Vittoria V (2009) Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym 75(1):172–179CrossRef
36.
Zurück zum Zitat Maran JP, Sivakumar V, Sridhar R, Thirugnanasambandham K (2013) Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydr Polym 92(2):1335–1347CrossRef Maran JP, Sivakumar V, Sridhar R, Thirugnanasambandham K (2013) Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydr Polym 92(2):1335–1347CrossRef
37.
Zurück zum Zitat Liu J, Reni L, Wei Q, Wu J, Liu S, Wang Y, Li G (2011) Fabrication and characterization of polycaprolactone/calcium sulfate whisker composites. Express Polym Lett 5(8):742–752CrossRef Liu J, Reni L, Wei Q, Wu J, Liu S, Wang Y, Li G (2011) Fabrication and characterization of polycaprolactone/calcium sulfate whisker composites. Express Polym Lett 5(8):742–752CrossRef
38.
Zurück zum Zitat Hu X, Xu H, Zhang Z (1994) Influence of fillers on the effectiveness of stabilizers. Polym Degrad Stab 43(2):225–228CrossRef Hu X, Xu H, Zhang Z (1994) Influence of fillers on the effectiveness of stabilizers. Polym Degrad Stab 43(2):225–228CrossRef
39.
Zurück zum Zitat Leong Y, Bakar A, Ishak Z, Ariffin A, Pukanszky B (2004) Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J Appl Polym Sci 91(5):3315–3326CrossRef Leong Y, Bakar A, Ishak Z, Ariffin A, Pukanszky B (2004) Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J Appl Polym Sci 91(5):3315–3326CrossRef
40.
Zurück zum Zitat Wang Y, Rodriguez-Perez MA, Reis RL, Mano JF (2005) Thermal and thermomechanical behaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applications. Macromol Mater Eng 290(8):792–801CrossRef Wang Y, Rodriguez-Perez MA, Reis RL, Mano JF (2005) Thermal and thermomechanical behaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applications. Macromol Mater Eng 290(8):792–801CrossRef
41.
Zurück zum Zitat Cai J, Xiong Z, Zhou M, Tan J, Zeng F, Lin S, Xiong H (2014) Thermal properties and crystallization behavior of thermoplastic starch/poly (ɛ-caprolactone) composites. Carbohydr Polym 102:746–754CrossRef Cai J, Xiong Z, Zhou M, Tan J, Zeng F, Lin S, Xiong H (2014) Thermal properties and crystallization behavior of thermoplastic starch/poly (ɛ-caprolactone) composites. Carbohydr Polym 102:746–754CrossRef
42.
Zurück zum Zitat Odusanya O, Ishiaku U, Azemi B, Manan B, Kammer H (2000) On mechanical properties of sago starch/poly (ε-caprolactone) composites. Polym Eng Sci 40(6):1298–1305CrossRef Odusanya O, Ishiaku U, Azemi B, Manan B, Kammer H (2000) On mechanical properties of sago starch/poly (ε-caprolactone) composites. Polym Eng Sci 40(6):1298–1305CrossRef
43.
Zurück zum Zitat Mahieu A, Terrié C, Agoulon A, Leblanc N, Youssef B (2013) Thermoplastic starch and poly(ε-caprolactone) blends: morphology and mechanical properties as a function of relative humidity. J Polym Res 20(9):1–13CrossRef Mahieu A, Terrié C, Agoulon A, Leblanc N, Youssef B (2013) Thermoplastic starch and poly(ε-caprolactone) blends: morphology and mechanical properties as a function of relative humidity. J Polym Res 20(9):1–13CrossRef
44.
Zurück zum Zitat Ali Akbari Ghavimi S, Ebrahimzadeh MH, Solati-Hashjin M, Osman A, Azuan N (2015) Polycaprolactone/starch composite: fabrication, structure, properties, and applications. J Biomed Mater Res Part A 103(7):2482–2498CrossRef Ali Akbari Ghavimi S, Ebrahimzadeh MH, Solati-Hashjin M, Osman A, Azuan N (2015) Polycaprolactone/starch composite: fabrication, structure, properties, and applications. J Biomed Mater Res Part A 103(7):2482–2498CrossRef
45.
Zurück zum Zitat Sun Y, Hu Q, Qian J, Li T, Ma P, Shi D, Dong W, Chen M (2016) Preparation and properties of thermoplastic poly (caprolactone) composites containing high amount of esterified starch without plasticizer. Carbohydr Polym 139:28–34CrossRef Sun Y, Hu Q, Qian J, Li T, Ma P, Shi D, Dong W, Chen M (2016) Preparation and properties of thermoplastic poly (caprolactone) composites containing high amount of esterified starch without plasticizer. Carbohydr Polym 139:28–34CrossRef
46.
Zurück zum Zitat Willett JL (1994) Mechanical properties of LDPE/granular starch composites. J Appl Polym Sci 54(11):1685–1695CrossRef Willett JL (1994) Mechanical properties of LDPE/granular starch composites. J Appl Polym Sci 54(11):1685–1695CrossRef
47.
Zurück zum Zitat Mano J, Koniarova D, Reis R (2003) Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci Mater Med 14(2):127–135CrossRef Mano J, Koniarova D, Reis R (2003) Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci Mater Med 14(2):127–135CrossRef
48.
Zurück zum Zitat Ruseckaite RA, Jiménez A (2003) Thermal degradation of mixtures of polycaprolactone with cellulose derivatives. Polym Degrad Stab 81(2):353–358CrossRef Ruseckaite RA, Jiménez A (2003) Thermal degradation of mixtures of polycaprolactone with cellulose derivatives. Polym Degrad Stab 81(2):353–358CrossRef
49.
Zurück zum Zitat Marques PT, Lima A, Bianco G, Laurindo J, Borsali R, Le Meins J-F, Soldi V (2006) Thermal properties and stability of cassava starch films cross-linked with tetraethylene glycol diacrylate. Polym Degrad Stab 91(4):726–732CrossRef Marques PT, Lima A, Bianco G, Laurindo J, Borsali R, Le Meins J-F, Soldi V (2006) Thermal properties and stability of cassava starch films cross-linked with tetraethylene glycol diacrylate. Polym Degrad Stab 91(4):726–732CrossRef
50.
Zurück zum Zitat Petinakis E, Liu X, Yu L, Way C, Sangwan P, Dean K, Bateman S, Edward G (2010) Biodegradation and thermal decomposition of poly (lactic acid)-based materials reinforced by hydrophilic fillers. Polym Degrad Stab 95(9):1704–1707CrossRef Petinakis E, Liu X, Yu L, Way C, Sangwan P, Dean K, Bateman S, Edward G (2010) Biodegradation and thermal decomposition of poly (lactic acid)-based materials reinforced by hydrophilic fillers. Polym Degrad Stab 95(9):1704–1707CrossRef
51.
Zurück zum Zitat Brydson JA (1999) Plastics materials. Butterworth-Heinemann, London Brydson JA (1999) Plastics materials. Butterworth-Heinemann, London
52.
Zurück zum Zitat Tomar N, Maiti SN (2010) Mechanical properties of mica-filled PBT/ABAS composites. J Appl Polym Sci 117(2):672–681CrossRef Tomar N, Maiti SN (2010) Mechanical properties of mica-filled PBT/ABAS composites. J Appl Polym Sci 117(2):672–681CrossRef
53.
Zurück zum Zitat Campos A, Tonoli GD, Marconcini J, Mattoso LC, Klamczynski A, Gregorski K, Wood D, Williams T, Chiou B-S, Imam S (2013) TPS/PCL composite reinforced with treated sisal fibers: property, biodegradation and water-absorption. J Polym Environ 21(1):1–7CrossRef Campos A, Tonoli GD, Marconcini J, Mattoso LC, Klamczynski A, Gregorski K, Wood D, Williams T, Chiou B-S, Imam S (2013) TPS/PCL composite reinforced with treated sisal fibers: property, biodegradation and water-absorption. J Polym Environ 21(1):1–7CrossRef
54.
Zurück zum Zitat Sewda K, Maiti S (2007) Mechanical properties of HDPE/bark flour composites. J Appl Polym Sci 105(5):2598–2604CrossRef Sewda K, Maiti S (2007) Mechanical properties of HDPE/bark flour composites. J Appl Polym Sci 105(5):2598–2604CrossRef
55.
Zurück zum Zitat Pukanszky B (1990) Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites 21(3):255–262CrossRef Pukanszky B (1990) Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites 21(3):255–262CrossRef
56.
Zurück zum Zitat Pukanszky B, Belina K, Rockenbauer A, Maurer F (1994) Effect of nucleation, filler anisotropy and orientation on the properties of PP composites. Composites 25(3):205–214CrossRef Pukanszky B, Belina K, Rockenbauer A, Maurer F (1994) Effect of nucleation, filler anisotropy and orientation on the properties of PP composites. Composites 25(3):205–214CrossRef
57.
Zurück zum Zitat Móczó J, Pukánszky B (2008) Polymer micro and nanocomposites: structure, interactions, properties. J Ind Eng Chem 14(5):535–563CrossRef Móczó J, Pukánszky B (2008) Polymer micro and nanocomposites: structure, interactions, properties. J Ind Eng Chem 14(5):535–563CrossRef
58.
Zurück zum Zitat Balamurugan GP, Maiti SN (2010) Effects of nanotalc inclusion on mechanical, microstructural, melt shear rheological, and crystallization behavior of polyamide 6-based binary and ternary nanocomposites. Polym Eng Sci 50(10):1978–1993CrossRef Balamurugan GP, Maiti SN (2010) Effects of nanotalc inclusion on mechanical, microstructural, melt shear rheological, and crystallization behavior of polyamide 6-based binary and ternary nanocomposites. Polym Eng Sci 50(10):1978–1993CrossRef
59.
Zurück zum Zitat Sewda K, Maiti S (2009) Mechanical properties of teak wood flour-reinforced HDPE composites. J Appl Polym Sci 112(3):1826–1834CrossRef Sewda K, Maiti S (2009) Mechanical properties of teak wood flour-reinforced HDPE composites. J Appl Polym Sci 112(3):1826–1834CrossRef
Metadaten
Titel
Analytical interpretation of mechanical response of green biocomposites based on poly(ε-caprolactone) and granular tapioca starch
verfasst von
Achla
S. N. Maiti
Josemon Jacob
Publikationsdatum
20.09.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 5/2017
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-016-1797-x

Weitere Artikel der Ausgabe 5/2017

Polymer Bulletin 5/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.