Skip to main content
Erschienen in: Wireless Personal Communications 1/2017

13.06.2017

Analytical Model of Deployment Methods for Application of Sensors in Non-hostile Environment

verfasst von: Omprakash Kaiwartya, Sushil Kumar, Abdul Hanan Abdullah

Erschienen in: Wireless Personal Communications | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless Sensor Networks (WSNs) has become one the promising research theme due to the availability of wide range of applications useful for almost each and every area of society. One fundamental application of WSNs is event detection in a Region of Interest (RoI). A set of sensors are deployed to monitor any events inside RoI. In such monitoring applications, both the quality of detection as well as resource requirement in terms of sensors must be optimized while satisfying a certain level of detection guaranty. Therefore, carrying out an optimal sensor deployment is a challenging task for achieving a certain coverage quality with minimum energy consumption and network cost. This paper proposes analytical models for critically analyzing the performance of different deployment techniques to provide insight on the design parameters and system behaviors. Mathematical formulations have been derived to measure the quality of coverage, energy consumption and network cost of geometrical deployment patterns in terms of different metrics; namely, size of RoI, number of sensors and their sensing range. The deployment patterns are modeled by using different shapes of mathematical geometry such square, tri-tilling-hexagon and hexagon. Simulations are carried out using MATLAB considering realistic parameter setting and results are comparatively analyzed for deployment techniques. Analysis of results attests the superiority of Tri Hexagon Tiling (THT) deployment in terms of 2-coverage, energy consumption and network cost to the square and hexagon deployments. In terms of 3-coverage and 4-coverage, hexagon deployment is better as compared to THT and square deployments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat He, C., Kiziroglou, M. E., Yates, D. C., & Yeatman, E. M. (2011). A MEMS self-powered sensor and RF transmission platform for WSN nodes. Sensors Journal, IEEE, 11(12), 3437–3445.CrossRef He, C., Kiziroglou, M. E., Yates, D. C., & Yeatman, E. M. (2011). A MEMS self-powered sensor and RF transmission platform for WSN nodes. Sensors Journal, IEEE, 11(12), 3437–3445.CrossRef
2.
Zurück zum Zitat Kaiwartya, O., Abdullah, A. H., Cao, Y., Raw, R. S., Kumar, S., Lobiyal, D. K., Isnin, I. F., Liu, X., & Shah, R. R. (2016). T-MQM: Testbed-based multi-metric quality measurement of sensor deployment for precision agriculture—a case study. IEEE Sensors Journal, 16(23), 8649–8664. Kaiwartya, O., Abdullah, A. H., Cao, Y., Raw, R. S., Kumar, S., Lobiyal, D. K., Isnin, I. F., Liu, X., & Shah, R. R. (2016). T-MQM: Testbed-based multi-metric quality measurement of sensor deployment for precision agriculture—a case study. IEEE Sensors Journal, 16(23), 8649–8664.
3.
Zurück zum Zitat Kumar, S., & Lobiyal, D. K. (2013). Sensing coverage prediction for wireless sensor networks in shadowed and multipath environment. The Scientific World Journal, 13(1), 1–13. Kumar, S., & Lobiyal, D. K. (2013). Sensing coverage prediction for wireless sensor networks in shadowed and multipath environment. The Scientific World Journal, 13(1), 1–13.
4.
Zurück zum Zitat Sharma, V., Patel, R. B., Bhadauria, H. S., & Prasad, D. Deployment schemes in wireless sensor network to achieve blanket coverage in large-scale open area: A review. Egyptian Informatics Journal, Elsevier, pp. 1, 2015 (in press) Sharma, V., Patel, R. B., Bhadauria, H. S., & Prasad, D. Deployment schemes in wireless sensor network to achieve blanket coverage in large-scale open area: A review. Egyptian Informatics Journal, Elsevier, pp. 1, 2015 (in press)
5.
Zurück zum Zitat Thiyagarajan, B., Ravisasthiri, P., Lalitha, P., Ambili, P., Thenmozhi, S., & Kumar, K. P. (2015). Target Tracking Using Wireless Sensor Networks: Survey. In Proceedings of the 2015 international conference on advanced research in computer science engineering & technology (ICARCSET), ACM, pp. 51–57. Thiyagarajan, B., Ravisasthiri, P., Lalitha, P., Ambili, P., Thenmozhi, S., & Kumar, K. P. (2015). Target Tracking Using Wireless Sensor Networks: Survey. In Proceedings of the 2015 international conference on advanced research in computer science engineering & technology (ICARCSET), ACM, pp. 51–57.
6.
Zurück zum Zitat Laoudias, C., Michaelides, M. P., & Panayiotou, C. G. (2014). ftTRACK: fault-tolerant target tracking in binary sensor networks. ACM Transactions on Sensor Networks (TOSN), 10(4), 24–64.CrossRef Laoudias, C., Michaelides, M. P., & Panayiotou, C. G. (2014). ftTRACK: fault-tolerant target tracking in binary sensor networks. ACM Transactions on Sensor Networks (TOSN), 10(4), 24–64.CrossRef
7.
Zurück zum Zitat Chen, J., Li, J., He, S., Sun, Y., & Chen, H. H. (2010). Energy-efficient coverage based on probabilistic sensing model in wireless sensor networks. Communications Letters, IEEE, 14(9), 833–835.CrossRef Chen, J., Li, J., He, S., Sun, Y., & Chen, H. H. (2010). Energy-efficient coverage based on probabilistic sensing model in wireless sensor networks. Communications Letters, IEEE, 14(9), 833–835.CrossRef
8.
Zurück zum Zitat Ramalakshmi, R., & Radhakrishnan, S. (2013). Coverage and connectivity guaranteed deterministic deployment pattern for WSN. In N. Chaki, N. Meghanathan & D. Nagamalai (Eds.), Computer networks & communications (NetCom) (pp. 341–347). New York: Springer.CrossRef Ramalakshmi, R., & Radhakrishnan, S. (2013). Coverage and connectivity guaranteed deterministic deployment pattern for WSN. In N. Chaki, N. Meghanathan & D. Nagamalai (Eds.), Computer networks & communications (NetCom) (pp. 341–347). New York: Springer.CrossRef
9.
Zurück zum Zitat Yun, Z., Bai, X., Xuan, D., Lai, T. H., & Jia, W. (2010). Optimal deployment patterns for full coverage and k-connectivity (k ≤ 6) wireless sensor networks. IEEE/ACM Transactions on Networking (TON), 18(3), 934–947.CrossRef Yun, Z., Bai, X., Xuan, D., Lai, T. H., & Jia, W. (2010). Optimal deployment patterns for full coverage and k-connectivity (k ≤ 6) wireless sensor networks. IEEE/ACM Transactions on Networking (TON), 18(3), 934–947.CrossRef
10.
Zurück zum Zitat Vecchio, M., & López-Valcarce, R. (2015). Improving area coverage of wireless sensor networks via controllable mobile nodes: A greedy approach. Journal of Network and Computer Applications, 48(3), 1–13.CrossRef Vecchio, M., & López-Valcarce, R. (2015). Improving area coverage of wireless sensor networks via controllable mobile nodes: A greedy approach. Journal of Network and Computer Applications, 48(3), 1–13.CrossRef
11.
Zurück zum Zitat Tsai, H. W., Chu, C. P., & Chen, T. S. (2007). Mobile object tracking in wireless sensor networks. Computer Communications, 30(8), 1811–1825.CrossRef Tsai, H. W., Chu, C. P., & Chen, T. S. (2007). Mobile object tracking in wireless sensor networks. Computer Communications, 30(8), 1811–1825.CrossRef
12.
Zurück zum Zitat Shaktawat, S. P., & Sharma, O. P. (2014). Node deployment models and their performance parameters for wireless sensor network: A perspective. International Journal of Computer Applications, 88(9), 975–981. Shaktawat, S. P., & Sharma, O. P. (2014). Node deployment models and their performance parameters for wireless sensor network: A perspective. International Journal of Computer Applications, 88(9), 975–981.
13.
Zurück zum Zitat Le, N. T., & Jang, Y. M. (2015). Energy-efficient coverage guarantees scheduling and routing strategy for wireless sensor networks. International Journal of Distributed Sensor Networks, 15(1), 1–15.CrossRef Le, N. T., & Jang, Y. M. (2015). Energy-efficient coverage guarantees scheduling and routing strategy for wireless sensor networks. International Journal of Distributed Sensor Networks, 15(1), 1–15.CrossRef
14.
Zurück zum Zitat Chizari, H., Hosseini, M., Poston, T., Razak, S. A., & Abdullah, A. H. (2011). Delaunay triangulation as a new coverage measurement method in wireless sensor network. Sensors, 11(3), 3163–3176.CrossRef Chizari, H., Hosseini, M., Poston, T., Razak, S. A., & Abdullah, A. H. (2011). Delaunay triangulation as a new coverage measurement method in wireless sensor network. Sensors, 11(3), 3163–3176.CrossRef
15.
Zurück zum Zitat Deif, D. S., & Gadallah, Y. (2014). Classification of wireless sensor networks deployment techniques. Communications Surveys & Tutorials, IEEE, 16(2), 834–855.CrossRef Deif, D. S., & Gadallah, Y. (2014). Classification of wireless sensor networks deployment techniques. Communications Surveys & Tutorials, IEEE, 16(2), 834–855.CrossRef
16.
Zurück zum Zitat Choi, J., & Lee, C. (2011). Energy consumption and lifetime analysis in clustered multi-hop wireless sensor networks using the probabilistic cluster-head selection method. EURASIP Journal on Wireless Communications and Networking, 1, 1–13. Choi, J., & Lee, C. (2011). Energy consumption and lifetime analysis in clustered multi-hop wireless sensor networks using the probabilistic cluster-head selection method. EURASIP Journal on Wireless Communications and Networking, 1, 1–13.
17.
Zurück zum Zitat Poe, W. Y., & Schmitt, J. B. (2009). Node deployment in large wireless sensor networks: coverage, energy consumption, and worst-case delay. In Asian internet engineering conference, ACM, (pp. 77–84) Poe, W. Y., & Schmitt, J. B. (2009). Node deployment in large wireless sensor networks: coverage, energy consumption, and worst-case delay. In Asian internet engineering conference, ACM, (pp. 77–84)
18.
Zurück zum Zitat Ammari, H. M., & Das, S. K. (2010). A study of k-coverage and measures of connectivity in 3D wireless sensor networks. Computers, IEEE Transactions on, 59(2), 243–257.CrossRefMATHMathSciNet Ammari, H. M., & Das, S. K. (2010). A study of k-coverage and measures of connectivity in 3D wireless sensor networks. Computers, IEEE Transactions on, 59(2), 243–257.CrossRefMATHMathSciNet
19.
Zurück zum Zitat Lazos, L., & Poovendran, R. (2006). Stochastic coverage in heterogeneous sensor networks. ACM Transactions on Sensor Networks (TOSN), 2(3), 325–358.CrossRef Lazos, L., & Poovendran, R. (2006). Stochastic coverage in heterogeneous sensor networks. ACM Transactions on Sensor Networks (TOSN), 2(3), 325–358.CrossRef
20.
Zurück zum Zitat He, J., & Shi, H. (2012). Constructing sensor barriers with minimum cost in wireless sensor networks. Journal of Parallel and Distributed Computing, 72(12), 1654–1663.CrossRef He, J., & Shi, H. (2012). Constructing sensor barriers with minimum cost in wireless sensor networks. Journal of Parallel and Distributed Computing, 72(12), 1654–1663.CrossRef
21.
Zurück zum Zitat Vales-Alonso, J., Parrado-García, F. J., López-Matencio, P., Alcaraz, J. J., & González-Castaño, F. J. (2013). On the optimal random deployment of wireless sensor networks in non-homogeneous scenarios. Ad Hoc Networks, 11(3), 846–860.CrossRef Vales-Alonso, J., Parrado-García, F. J., López-Matencio, P., Alcaraz, J. J., & González-Castaño, F. J. (2013). On the optimal random deployment of wireless sensor networks in non-homogeneous scenarios. Ad Hoc Networks, 11(3), 846–860.CrossRef
22.
Zurück zum Zitat Ammari, H. M., & Das, S. K. (2012). Centralized and clustered k-coverage protocols for wireless sensor networks. IEEE Transactions on Computers, 61(1), 118–133.CrossRefMATHMathSciNet Ammari, H. M., & Das, S. K. (2012). Centralized and clustered k-coverage protocols for wireless sensor networks. IEEE Transactions on Computers, 61(1), 118–133.CrossRefMATHMathSciNet
23.
Zurück zum Zitat Tan, R., Xing, G., Wang, J., & So, H. C. (2010). Exploiting reactive mobility for collaborative target detection in wireless sensor networks. Mobile Computing, IEEE Transactions on, 9(3), 317–332.CrossRef Tan, R., Xing, G., Wang, J., & So, H. C. (2010). Exploiting reactive mobility for collaborative target detection in wireless sensor networks. Mobile Computing, IEEE Transactions on, 9(3), 317–332.CrossRef
24.
Zurück zum Zitat Lazos, L., Poovendran, R., & Ritcey, J. A. (2009). Analytic evaluation of target detection in heterogeneous wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 5(2), 18.CrossRef Lazos, L., Poovendran, R., & Ritcey, J. A. (2009). Analytic evaluation of target detection in heterogeneous wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 5(2), 18.CrossRef
25.
Zurück zum Zitat Alam, K. M., Kamruzzaman, J., Karmakar, G., & Murshed, M. (2014). Dynamic adjustment of sensing range for event coverage in wireless sensor networks. Journal of Network and Computer Applications, 46, 139–153.CrossRef Alam, K. M., Kamruzzaman, J., Karmakar, G., & Murshed, M. (2014). Dynamic adjustment of sensing range for event coverage in wireless sensor networks. Journal of Network and Computer Applications, 46, 139–153.CrossRef
26.
Zurück zum Zitat Beaudaux, J., Gallais, A., & Razafindralambo, T. Multiple coverage with controlled connectivity in wireless sensor networks. InProceedings of the 7th ACM workshop on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, ACM, pp. 9–16, October, 2010 Beaudaux, J., Gallais, A., & Razafindralambo, T. Multiple coverage with controlled connectivity in wireless sensor networks. InProceedings of the 7th ACM workshop on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, ACM, pp. 9–16, October, 2010
27.
Zurück zum Zitat G. S. Rao and V. Vallikumari, “Hybrid Deployment Schemes for Wireless Sensor Networks,” In Proceedings of 4th international conference on networks and communications, Chennai, India, (pp. 349–357). 2013. G. S. Rao and V. Vallikumari, “Hybrid Deployment Schemes for Wireless Sensor Networks,” In Proceedings of 4th international conference on networks and communications, Chennai, India, (pp. 349–357). 2013.
28.
Zurück zum Zitat Park, P., Min, S. G., & Han, Y. H. A. (2010) Grid-based self-deployment schemes in mobile sensor networks. In: Ubiquitous information technologies and applications (CUTE), 2010 proceedings of the 5th international conference on, IEEE (pp. 1–5), December 2010. Park, P., Min, S. G., & Han, Y. H. A. (2010) Grid-based self-deployment schemes in mobile sensor networks. In: Ubiquitous information technologies and applications (CUTE), 2010 proceedings of the 5th international conference on, IEEE (pp. 1–5), December 2010.
29.
Zurück zum Zitat Rafi, R. S., Rahman, M. M., Sultana, N., & Hossain, M. (2013). Energy and coverage efficient static node deployment model for wireless sensor network. International Journal of Scientific & Engineering Research, 4(4), 382–387. Rafi, R. S., Rahman, M. M., Sultana, N., & Hossain, M. (2013). Energy and coverage efficient static node deployment model for wireless sensor network. International Journal of Scientific & Engineering Research, 4(4), 382–387.
30.
Zurück zum Zitat Li, R., Liu, X., Xie, W., & Huang, N. (2014). Deployment-based lifetime optimization model for homogeneous wireless sensor network under retransmission. Sensors, 14(12), 23697–23723.CrossRef Li, R., Liu, X., Xie, W., & Huang, N. (2014). Deployment-based lifetime optimization model for homogeneous wireless sensor network under retransmission. Sensors, 14(12), 23697–23723.CrossRef
31.
Zurück zum Zitat Xiao J, Han S, Zhang Y, Xu G (2010) Hexagonal grid-based sensor deployment algorithm. In: Proceedings of control and decision conference (CCDC), 2010 Chinese (pp. 4342–4346). Xuzhou, China. Xiao J, Han S, Zhang Y, Xu G (2010) Hexagonal grid-based sensor deployment algorithm. In: Proceedings of control and decision conference (CCDC), 2010 Chinese (pp. 4342–4346). Xuzhou, China.
32.
Zurück zum Zitat Aanchal, K., Kumar, S., Kaiwartya, O., & Abdullah, A. H. (2017). Green computing for wireless sensor networks: Optimization and Huffman coding approach. Peer-to-Peer Networking and Applications, 10(3), 592–609.CrossRef Aanchal, K., Kumar, S., Kaiwartya, O., & Abdullah, A. H. (2017). Green computing for wireless sensor networks: Optimization and Huffman coding approach. Peer-to-Peer Networking and Applications, 10(3), 592–609.CrossRef
33.
Zurück zum Zitat Jiang, X., Taneja, J., Ortiz, J., Tavakoli, A., Dutta, P., Jeong, J., et al. (2007). An architecture for energy management in wireless sensor networks. ACM SIGBED Review, 4(3), 31–36.CrossRef Jiang, X., Taneja, J., Ortiz, J., Tavakoli, A., Dutta, P., Jeong, J., et al. (2007). An architecture for energy management in wireless sensor networks. ACM SIGBED Review, 4(3), 31–36.CrossRef
34.
Zurück zum Zitat Cecílio, J., & Furtado, P. (2014). Wireless sensors in heterogeneous networked systems, Chapter 2 (pp. 5–25). Berlin: Sringer. Cecílio, J., & Furtado, P. (2014). Wireless sensors in heterogeneous networked systems, Chapter 2 (pp. 5–25). Berlin: Sringer.
36.
Zurück zum Zitat Dorling, K., Messier, G. G., Valentin, S., & Magierowski, S. (2015). Minimizing the net present cost of deploying and operating wireless sensor networks. IEEE Transactions on Network and Service Management, 12(3), 511–525.CrossRef Dorling, K., Messier, G. G., Valentin, S., & Magierowski, S. (2015). Minimizing the net present cost of deploying and operating wireless sensor networks. IEEE Transactions on Network and Service Management, 12(3), 511–525.CrossRef
Metadaten
Titel
Analytical Model of Deployment Methods for Application of Sensors in Non-hostile Environment
verfasst von
Omprakash Kaiwartya
Sushil Kumar
Abdul Hanan Abdullah
Publikationsdatum
13.06.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4584-6

Weitere Artikel der Ausgabe 1/2017

Wireless Personal Communications 1/2017 Zur Ausgabe

Neuer Inhalt