Skip to main content
Erschienen in: Journal of Computational Electronics 1/2018

04.08.2017

Analytical modeling of gate-all-around junctionless transistor based biosensors for detection of neutral biomolecule species

verfasst von: Yogesh Pratap, Manoj Kumar, Sneha Kabra, Subhasis Haldar, R. S. Gupta, Mridula Gupta

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent times, FET-based sensors have been widely used in industrial and domestic applications due to their low cost and high sensitivity. In this paper, a nanogap-embedded gate-all-around junctionless transistor (GAA JLT) is proposed for label-free electrochemical detection of neutral biomolecule species such as Uricase, Protein, ChOx, APTES and Streptavidin. Shifts in subthreshold current, threshold voltage and capacitance are used to predict the response of the sensor. Impact of cavity width, cavity length, and gate length on the sensitivity of a junctionless transistor has also been investigated in detail. An analytical model has been developed for a GAA JLT-based biosensor. The results are compared with an inversion mode transistor-based biosensor using TCAD numerical simulation. The GAA JLT shows very high sensitivity due to the gate all around structure and bulk conduction mechanism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wong, H.S.P.: Beyond the conventional MOSFET. In: Proceeding of 31th European Solid State Device Research Conference, p. 69 (2011) Wong, H.S.P.: Beyond the conventional MOSFET. In: Proceeding of 31th European Solid State Device Research Conference, p. 69 (2011)
2.
Zurück zum Zitat Lion, Y.B., Chaing, M.H., Damrongplasit, N., Hsu, W.C., Liu, T.J.K.: Design of gate-all-around silicon MOSFETs for 6-T SRAM area efficients and yield. IEEE Trans. Electron Devices 61(7), 2371–2377 (2014)CrossRef Lion, Y.B., Chaing, M.H., Damrongplasit, N., Hsu, W.C., Liu, T.J.K.: Design of gate-all-around silicon MOSFETs for 6-T SRAM area efficients and yield. IEEE Trans. Electron Devices 61(7), 2371–2377 (2014)CrossRef
3.
Zurück zum Zitat Kaushal, G., Manhas, S.K., Maheshwaram, S., Anand, B., Dasgupta, S., Singh, N.: Novel design methodology using LEXT sizing in nanowire CMOS logic. IEEE Trans. Electron Devices 13(4), 650–658 (2014) Kaushal, G., Manhas, S.K., Maheshwaram, S., Anand, B., Dasgupta, S., Singh, N.: Novel design methodology using LEXT sizing in nanowire CMOS logic. IEEE Trans. Electron Devices 13(4), 650–658 (2014)
4.
Zurück zum Zitat Lee, C., Zhuang, Y., Di, S., Han, R.: Subthreshold behavior models for nanoscale short-channel junctionless cylindrical surrounding-gate MOSFETs. IEEE Electron Device Lett. 60(11), 3655–3662 (2013)CrossRef Lee, C., Zhuang, Y., Di, S., Han, R.: Subthreshold behavior models for nanoscale short-channel junctionless cylindrical surrounding-gate MOSFETs. IEEE Electron Device Lett. 60(11), 3655–3662 (2013)CrossRef
5.
Zurück zum Zitat Nayak, K., Bajaj, M., Konar, A., Oldiges, P.J., Natori, K., Iwani, H., Murli, K.V.R.M., Rao, V.R.: CMOS logic device and circuit performance of Si gate all around nanowire MOSFET. IEEE Trans. Electron Devices 61(9), 3066–3074 (2014)CrossRef Nayak, K., Bajaj, M., Konar, A., Oldiges, P.J., Natori, K., Iwani, H., Murli, K.V.R.M., Rao, V.R.: CMOS logic device and circuit performance of Si gate all around nanowire MOSFET. IEEE Trans. Electron Devices 61(9), 3066–3074 (2014)CrossRef
6.
Zurück zum Zitat Wang, T., Lou, L., Lee, C.: A junctionless gate-all-around silicon nanowire FET of high linearity and its potential applications. IEEE Electron Devices Lett. 34(4), 478–480 (2013)CrossRef Wang, T., Lou, L., Lee, C.: A junctionless gate-all-around silicon nanowire FET of high linearity and its potential applications. IEEE Electron Devices Lett. 34(4), 478–480 (2013)CrossRef
7.
Zurück zum Zitat Lee, C.W., Borne, A., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.P.: High-temperature performance of silicon junctionless MOSFETs. IEEE Trans. Electron Devices 57(3), 620–625 (2010)CrossRef Lee, C.W., Borne, A., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.P.: High-temperature performance of silicon junctionless MOSFETs. IEEE Trans. Electron Devices 57(3), 620–625 (2010)CrossRef
8.
Zurück zum Zitat Doria, R.T., Pavanello, M.A., Trevisoli, R.D., Souza, M., Lee, C.W., Ferain, I., Akhavan, N., Yan, R., Razavi, P., Yu, R., Kranti, A., Colinge, J.P.: Analog operation temperature dependence of nMOS junctionless transistors focusing on harmonic distortion. J. Integr. Circuit Syst. 6(5), 114–120 (2011) Doria, R.T., Pavanello, M.A., Trevisoli, R.D., Souza, M., Lee, C.W., Ferain, I., Akhavan, N., Yan, R., Razavi, P., Yu, R., Kranti, A., Colinge, J.P.: Analog operation temperature dependence of nMOS junctionless transistors focusing on harmonic distortion. J. Integr. Circuit Syst. 6(5), 114–120 (2011)
9.
Zurück zum Zitat Mathew, L., Du, Y., Thean, A.V.Y., Sadd, M., Vandooren, A., Prher, C., Steehehens, T., et al.: CMOS vertical multiple independent gate field effect transistor (MIGFET). In: Proceeding of IEEE International SOI Conference, pp. 187–189 (2004) Mathew, L., Du, Y., Thean, A.V.Y., Sadd, M., Vandooren, A., Prher, C., Steehehens, T., et al.: CMOS vertical multiple independent gate field effect transistor (MIGFET). In: Proceeding of IEEE International SOI Conference, pp. 187–189 (2004)
10.
Zurück zum Zitat Mathew, L., Du, Y., Kalpat, S., Sadd, M., Zavala, M., et al.: Multiple independent gate field effect transistor (MIGFET)—multi-fin RF mixer architecture, three independent gates (MIGFET-T) operation and temperature characteristics beyond the conventional MOSFET. In: Proceeding of 31th Symposium on VLSI Technology Digest of Technical Papers Conference, pp. 200–201 (2005) Mathew, L., Du, Y., Kalpat, S., Sadd, M., Zavala, M., et al.: Multiple independent gate field effect transistor (MIGFET)—multi-fin RF mixer architecture, three independent gates (MIGFET-T) operation and temperature characteristics beyond the conventional MOSFET. In: Proceeding of 31th Symposium on VLSI Technology Digest of Technical Papers Conference, pp. 200–201 (2005)
11.
Zurück zum Zitat Rostami, M., Mohanram, K.: Dual-Vth independent gate FinFets for low power logic circuits. IEEE Trans. Electron Devices 58, 567–571 (2011)CrossRef Rostami, M., Mohanram, K.: Dual-Vth independent gate FinFets for low power logic circuits. IEEE Trans. Electron Devices 58, 567–571 (2011)CrossRef
12.
Zurück zum Zitat Xiang, L., Chen, Z., Shen, N., Singh, N., Banerjee, K., Lo, G.Q., Knong, D.L.: Vertically stacked and independently controlled twin-gate MOSFETs on a single silicon nanowire. IEEE Electron Devices Lett. 32(11), 1492–1494 (2011)CrossRef Xiang, L., Chen, Z., Shen, N., Singh, N., Banerjee, K., Lo, G.Q., Knong, D.L.: Vertically stacked and independently controlled twin-gate MOSFETs on a single silicon nanowire. IEEE Electron Devices Lett. 32(11), 1492–1494 (2011)CrossRef
13.
Zurück zum Zitat Zhang, J., Gaillardon, P.E., Micheli, G.: Dual-threshold voltage configurable circuits with three independent gate silicon nanowire FETs. IEEE Trans. Electron Devices 58, 567–571 (2013) Zhang, J., Gaillardon, P.E., Micheli, G.: Dual-threshold voltage configurable circuits with three independent gate silicon nanowire FETs. IEEE Trans. Electron Devices 58, 567–571 (2013)
14.
Zurück zum Zitat Jeon, D.Y., Park, S.J., Mouis, M., Barraud, S., Kim, G.T., Ghibaudo, G.: Low-temperature electrical characterization of junctionless transistors. Solid State Electron. 80, 135–141 (2013)CrossRef Jeon, D.Y., Park, S.J., Mouis, M., Barraud, S., Kim, G.T., Ghibaudo, G.: Low-temperature electrical characterization of junctionless transistors. Solid State Electron. 80, 135–141 (2013)CrossRef
15.
Zurück zum Zitat Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., Neill, B.O., Blake, A., White, M., Kelleher, A.M., McCarthy, B., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)CrossRef Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., Neill, B.O., Blake, A., White, M., Kelleher, A.M., McCarthy, B., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)CrossRef
16.
Zurück zum Zitat Hyungsoon, I.M., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2, 430–434 (2007)CrossRef Hyungsoon, I.M., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2, 430–434 (2007)CrossRef
17.
Zurück zum Zitat Ghosh, D., Parihar, M., Armstrong, G., Kranti, A.: High-performance junctionless MOSFETs for ultralow-power analog/RF applications. IEEE Electron Device Lett. 33(10), 1477–1479 (2012)CrossRef Ghosh, D., Parihar, M., Armstrong, G., Kranti, A.: High-performance junctionless MOSFETs for ultralow-power analog/RF applications. IEEE Electron Device Lett. 33(10), 1477–1479 (2012)CrossRef
18.
Zurück zum Zitat Doria, R.T., Pavanello, M., Trevisoli, R.D., Souza, M., et al.: Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices 58(8), 2511–2519 (2011)CrossRef Doria, R.T., Pavanello, M., Trevisoli, R.D., Souza, M., et al.: Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices 58(8), 2511–2519 (2011)CrossRef
19.
Zurück zum Zitat Pratap, Y., Haldar, S., Gupta, R.S., Gupta, M.: Localised charge dependent threshold voltage analysis of gate-material-engineered junctionless nanowire transistor. IEEE Trans. Electron Devices 62, 2598–2605 (2015)CrossRef Pratap, Y., Haldar, S., Gupta, R.S., Gupta, M.: Localised charge dependent threshold voltage analysis of gate-material-engineered junctionless nanowire transistor. IEEE Trans. Electron Devices 62, 2598–2605 (2015)CrossRef
20.
Zurück zum Zitat Moon, D.I., Choi, S.J., Duarte, J.P., Choi, Y.K.: Investigation of silicon nanowire gate all around junctionless transistors built in bulk substrate. IEEE Trans. Electron Devices 60(4), 1355–1359 (2013)CrossRef Moon, D.I., Choi, S.J., Duarte, J.P., Choi, Y.K.: Investigation of silicon nanowire gate all around junctionless transistors built in bulk substrate. IEEE Trans. Electron Devices 60(4), 1355–1359 (2013)CrossRef
21.
Zurück zum Zitat Pratap, Y., Haldar, S., Gupta, R.S., Gupta, M.: Performance evaluation and reliability issues of junctionless CSG MOSFET for RFIC design. IEEE Trans. Device Mater. Reliab. 14(1), 418–425 (2014)CrossRef Pratap, Y., Haldar, S., Gupta, R.S., Gupta, M.: Performance evaluation and reliability issues of junctionless CSG MOSFET for RFIC design. IEEE Trans. Device Mater. Reliab. 14(1), 418–425 (2014)CrossRef
22.
Zurück zum Zitat ATLAS 3D Device Simulator . SILVACO Int., Santa Clara (2014) ATLAS 3D Device Simulator . SILVACO Int., Santa Clara (2014)
23.
Zurück zum Zitat Cong, L., Yiqi, Z., Ru, H.: New analytical threshold voltage model for halo-doped cylindrical surrounding-gate MOSFETs. J. Semicond. 32(7), 1–8 (2011) Cong, L., Yiqi, Z., Ru, H.: New analytical threshold voltage model for halo-doped cylindrical surrounding-gate MOSFETs. J. Semicond. 32(7), 1–8 (2011)
24.
Zurück zum Zitat Chiang, T.K.: A compact model for threshold voltage of surrounding-gate MOSFETs with localised interface trapped charges. IEEE Trans. Electron Devices 58, 567–571 (2011)CrossRef Chiang, T.K.: A compact model for threshold voltage of surrounding-gate MOSFETs with localised interface trapped charges. IEEE Trans. Electron Devices 58, 567–571 (2011)CrossRef
25.
Zurück zum Zitat Pratap, Y., Ghosh, P., Haldar, S., Gupta, R.S., Gupta, M.: An analytical subthreshold current modeling of cylindrical gate all around (CGAA) MOSFET incorporating the influence of device design engineering. Microelectron. J. 45(4), 408–415 (2014)CrossRef Pratap, Y., Ghosh, P., Haldar, S., Gupta, R.S., Gupta, M.: An analytical subthreshold current modeling of cylindrical gate all around (CGAA) MOSFET incorporating the influence of device design engineering. Microelectron. J. 45(4), 408–415 (2014)CrossRef
26.
Zurück zum Zitat Choi, S.J., Moon, D.I., Kim, S., Duarte, J.P., Choi, Y.K.: Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron Device Lett. 32, 125–132 (2011)CrossRef Choi, S.J., Moon, D.I., Kim, S., Duarte, J.P., Choi, Y.K.: Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron Device Lett. 32, 125–132 (2011)CrossRef
27.
Zurück zum Zitat Kumari, V., Saxena, M., Gupta, R.S., Gupta, M.: Two-dimensional analytical drain current model for double-gate MOSFET incorporating dielectric pocket. IEEE Trans. Electron Devices 59(10), 2567–2574 (2012)CrossRef Kumari, V., Saxena, M., Gupta, R.S., Gupta, M.: Two-dimensional analytical drain current model for double-gate MOSFET incorporating dielectric pocket. IEEE Trans. Electron Devices 59(10), 2567–2574 (2012)CrossRef
Metadaten
Titel
Analytical modeling of gate-all-around junctionless transistor based biosensors for detection of neutral biomolecule species
verfasst von
Yogesh Pratap
Manoj Kumar
Sneha Kabra
Subhasis Haldar
R. S. Gupta
Mridula Gupta
Publikationsdatum
04.08.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1041-4

Weitere Artikel der Ausgabe 1/2018

Journal of Computational Electronics 1/2018 Zur Ausgabe

Neuer Inhalt