Skip to main content
Erschienen in: Journal of Materials Science 23/2017

10.08.2017 | Energy materials

Analytical solutions and numerical simulations of diffusion-induced stresses and concentration distributions in porous electrodes with particles of different size and shape

verfasst von: Zhansheng Guo, Liang Ji, Lei Chen

Erschienen in: Journal of Materials Science | Ausgabe 23/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Analytical solutions of exact lithium-ion (Li-ion) concentration distributions and diffusion-induced stresses (DISs) within elliptical and spherical particles are obtained. A two-dimensional scanning electron microscopy image-dependent model of porous electrodes that accounts for the diffusion, DIS, and the size and shape polydispersity of electrode particles is developed. The effects of the size and shape polydispersity on concentration profiles, DIS evolution, and mechanical failure mechanisms are numerically discussed. Simulations show that small particles experienced less DIS than larger particles, primarily because of their reduced strain mismatch. In elliptical electrode particles, simple cracks appear at the endpoints of the major axis, while more complicated and severe cracks appear at the endpoints of the minor axis. Small particles with a spherical geometry are most favorable for alleviating DIS. Thus, the microscopic state of charge (SOC) values and mass fractions of differently sized and shaped particles should be considered simultaneously when determining the optimal macroscopic SOC of a porous electrode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Palacin MR, de Guibert A (2016) Why do batteries fail? Science 351:1253292CrossRef Palacin MR, de Guibert A (2016) Why do batteries fail? Science 351:1253292CrossRef
2.
Zurück zum Zitat Liu H, Strobridge FC, Borkiewiez OJ, Wiaderek KM, Chapman KW, Chupas PJ, Grey CP (2014) Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344:1252817CrossRef Liu H, Strobridge FC, Borkiewiez OJ, Wiaderek KM, Chapman KW, Chupas PJ, Grey CP (2014) Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344:1252817CrossRef
3.
Zurück zum Zitat Ebner M, Marone F, Stampanoni M, Wood V (2013) Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342:716–720CrossRef Ebner M, Marone F, Stampanoni M, Wood V (2013) Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342:716–720CrossRef
4.
Zurück zum Zitat Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef
5.
Zurück zum Zitat Banerjee J, Dutta K (2017) Materials for electrodes of Li-ion batteries: issues related to stress development. Crit Rev Solid State 42(3):218–238CrossRef Banerjee J, Dutta K (2017) Materials for electrodes of Li-ion batteries: issues related to stress development. Crit Rev Solid State 42(3):218–238CrossRef
6.
Zurück zum Zitat Malavé V, Berger JR, Martin PA (2014) Concentration-dependent chemical expansion in lithium-ion battery cathode particles. J Appl Mech 81(9):091005CrossRef Malavé V, Berger JR, Martin PA (2014) Concentration-dependent chemical expansion in lithium-ion battery cathode particles. J Appl Mech 81(9):091005CrossRef
7.
Zurück zum Zitat Malavé V, Berger JR, Zhu H, Kee RJ (2014) A computational model of the mechanical behavior within reconstructed LixCoO2 Li-ion battery cathode particles. Electrochim Acta 130:707–717CrossRef Malavé V, Berger JR, Zhu H, Kee RJ (2014) A computational model of the mechanical behavior within reconstructed LixCoO2 Li-ion battery cathode particles. Electrochim Acta 130:707–717CrossRef
8.
Zurück zum Zitat Zhang X, Shyy W, Sastry AM (2007) Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc 154(10):A910–A916CrossRef Zhang X, Shyy W, Sastry AM (2007) Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc 154(10):A910–A916CrossRef
9.
Zurück zum Zitat Zhang X, Sastry AM, Shyy W (2008) Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. J Electrochem Soc 155(7):A542–A552CrossRef Zhang X, Sastry AM, Shyy W (2008) Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. J Electrochem Soc 155(7):A542–A552CrossRef
10.
Zurück zum Zitat Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2016) Modeling crack growth during Li insertion in storage particles using a fracture phase field approach. J Mech Phys Solids 92:313–344CrossRef Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2016) Modeling crack growth during Li insertion in storage particles using a fracture phase field approach. J Mech Phys Solids 92:313–344CrossRef
11.
Zurück zum Zitat Liang L, Stan M, Anitescu M (2014) Phase-field modeling of diffusion-induced crack propagations in electrochemical systems. Appl Phys Lett 105(16):163903CrossRef Liang L, Stan M, Anitescu M (2014) Phase-field modeling of diffusion-induced crack propagations in electrochemical systems. Appl Phys Lett 105(16):163903CrossRef
12.
Zurück zum Zitat ChiuHuang CK, Huang HYS (2013) Stress evolution on the phase boundary in LiFePO4 particles. J Electrochem Soc 160(11):A2184–A2188CrossRef ChiuHuang CK, Huang HYS (2013) Stress evolution on the phase boundary in LiFePO4 particles. J Electrochem Soc 160(11):A2184–A2188CrossRef
13.
Zurück zum Zitat Drozdov AD (2014) Constitutive equations for self-limiting lithiation of electrode nanoparticles in Li-ion batteries. Mech Res Commun 57:67–73CrossRef Drozdov AD (2014) Constitutive equations for self-limiting lithiation of electrode nanoparticles in Li-ion batteries. Mech Res Commun 57:67–73CrossRef
14.
Zurück zum Zitat Drozdov AD (2014) A model for the mechanical response of electrode particles induced by lithium diffusion in Li-ion batteries. Acta Mech 225(11):2987–3005CrossRef Drozdov AD (2014) A model for the mechanical response of electrode particles induced by lithium diffusion in Li-ion batteries. Acta Mech 225(11):2987–3005CrossRef
15.
Zurück zum Zitat Golmon S, Maute K, Lee SH, Dunn ML (2010) Stress generation in silicon particles during lithium insertion. Appl Phys Lett 97(3):033111CrossRef Golmon S, Maute K, Lee SH, Dunn ML (2010) Stress generation in silicon particles during lithium insertion. Appl Phys Lett 97(3):033111CrossRef
16.
Zurück zum Zitat Cui Z, Gao F, Qu J (2012) A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J Mech Phys Solids 60(7):1280–1295CrossRef Cui Z, Gao F, Qu J (2012) A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J Mech Phys Solids 60(7):1280–1295CrossRef
17.
Zurück zum Zitat Kalnaus S, Rhodes K, Daniel C (2011) A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery. J Power Sources 196(19):8116–8124CrossRef Kalnaus S, Rhodes K, Daniel C (2011) A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery. J Power Sources 196(19):8116–8124CrossRef
18.
Zurück zum Zitat Chen B, Zhou J, Cai R (2016) Analytical model for crack propagation in spherical nano electrodes of lithium-ion batteries. Electrochim Acta 210:7–14CrossRef Chen B, Zhou J, Cai R (2016) Analytical model for crack propagation in spherical nano electrodes of lithium-ion batteries. Electrochim Acta 210:7–14CrossRef
19.
Zurück zum Zitat Brassart L, Zhao K, Suo Z (2013) Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries. Int J Solids Struct 50:1120–1129CrossRef Brassart L, Zhao K, Suo Z (2013) Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries. Int J Solids Struct 50:1120–1129CrossRef
20.
Zurück zum Zitat DeLuca CM, Maute K, Dunn ML (2011) Effects of electrode particle morphology on stress generation in silicon during lithium insertion. J Power Sources 196(22):9672–9681CrossRef DeLuca CM, Maute K, Dunn ML (2011) Effects of electrode particle morphology on stress generation in silicon during lithium insertion. J Power Sources 196(22):9672–9681CrossRef
21.
Zurück zum Zitat Cheng YT, Verbrugge MW (2010) Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J Electrochem Soc 157(4):A508–A516CrossRef Cheng YT, Verbrugge MW (2010) Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J Electrochem Soc 157(4):A508–A516CrossRef
22.
Zurück zum Zitat Verbrugge MW, Cheng YT (2009) Stress and strain-energy distributions within diffusion-controlled insertion-electrode particles subjected to periodic potential excitations. J Electrochem Soc 156(11):A927–A937CrossRef Verbrugge MW, Cheng YT (2009) Stress and strain-energy distributions within diffusion-controlled insertion-electrode particles subjected to periodic potential excitations. J Electrochem Soc 156(11):A927–A937CrossRef
23.
Zurück zum Zitat Li Y, Zhang K, Zheng B (2014) Stress analysis in spherical composition-gradient electrodes of lithium-ion battery. J Electrochem Soc 162(1):A223–A228CrossRef Li Y, Zhang K, Zheng B (2014) Stress analysis in spherical composition-gradient electrodes of lithium-ion battery. J Electrochem Soc 162(1):A223–A228CrossRef
24.
Zurück zum Zitat Zhang K, Li Y, Zheng B (2015) Effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induced stresses in spherical composition-gradient electrodes. J Appl Phys 118(10):105102CrossRef Zhang K, Li Y, Zheng B (2015) Effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induced stresses in spherical composition-gradient electrodes. J Appl Phys 118(10):105102CrossRef
25.
Zurück zum Zitat Zhang K, Li Y, Zheng B (2015) Influence of maximum lithium ion concentration in composition-gradient electrodes on diffusion-induced stresses and electrochemical performances. J Electrochem Soc 162(9):A1873–A1878CrossRef Zhang K, Li Y, Zheng B (2015) Influence of maximum lithium ion concentration in composition-gradient electrodes on diffusion-induced stresses and electrochemical performances. J Electrochem Soc 162(9):A1873–A1878CrossRef
26.
Zurück zum Zitat Zhang XY, Chen HS, Fang DN (2016) Diffusion-induced stress of electrode particles with spherically isotropic elastic properties in lithium-ion batteries. J Solid State Electr 20(10):2835–2845CrossRef Zhang XY, Chen HS, Fang DN (2016) Diffusion-induced stress of electrode particles with spherically isotropic elastic properties in lithium-ion batteries. J Solid State Electr 20(10):2835–2845CrossRef
27.
Zurück zum Zitat Zhang XY, Hao F, Chen HS, Fang DN (2014) Diffusion-induced stresses in transversely isotropic cylindrical electrodes of lithium-ion batteries. J Electrochem Soc 161(14):A2243–A2249CrossRef Zhang XY, Hao F, Chen HS, Fang DN (2014) Diffusion-induced stresses in transversely isotropic cylindrical electrodes of lithium-ion batteries. J Electrochem Soc 161(14):A2243–A2249CrossRef
28.
Zurück zum Zitat Dal H, Miehe C (2014) Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains. Comput Mech 55(2):303–325CrossRef Dal H, Miehe C (2014) Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains. Comput Mech 55(2):303–325CrossRef
29.
Zurück zum Zitat Bower AF, Guduru PR, Chason E (2015) Analytical solutions for composition and stress in spherical elastic–plastic lithium-ion electrode particles containing a propagating phase boundary. Int J Solids Struct 69–70:328–342CrossRef Bower AF, Guduru PR, Chason E (2015) Analytical solutions for composition and stress in spherical elastic–plastic lithium-ion electrode particles containing a propagating phase boundary. Int J Solids Struct 69–70:328–342CrossRef
30.
Zurück zum Zitat Suthar B, Subramanian VR (2014) Lithium intercalation in core-shell materials–theoretical analysis. J Electrochem Soc 161(5):A682–A692CrossRef Suthar B, Subramanian VR (2014) Lithium intercalation in core-shell materials–theoretical analysis. J Electrochem Soc 161(5):A682–A692CrossRef
31.
Zurück zum Zitat Hao F, Fang D (2013) Diffusion-induced stresses of spherical core-shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress. J Electrochem Soc 160(4):A595–A600CrossRef Hao F, Fang D (2013) Diffusion-induced stresses of spherical core-shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress. J Electrochem Soc 160(4):A595–A600CrossRef
32.
Zurück zum Zitat Huang S, Fan F, Li J, Zhang S, Zhu T (2013) Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater 61(12):4354–4364CrossRef Huang S, Fan F, Li J, Zhang S, Zhu T (2013) Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater 61(12):4354–4364CrossRef
33.
Zurück zum Zitat Zhang L, Song Y, He L, Ni Y (2014) Variations of boundary reaction rate and particle size on the diffusion-induced stress in a phase separating electrode. J Appl Phys 116(14):143506CrossRef Zhang L, Song Y, He L, Ni Y (2014) Variations of boundary reaction rate and particle size on the diffusion-induced stress in a phase separating electrode. J Appl Phys 116(14):143506CrossRef
34.
Zurück zum Zitat Wang C, Ma Z, Wang Y, Lu C (2016) Failure prediction of high-capacity electrode materials in lithium-ion batteries. J Electrochem Soc 163(7):A1157–A1163CrossRef Wang C, Ma Z, Wang Y, Lu C (2016) Failure prediction of high-capacity electrode materials in lithium-ion batteries. J Electrochem Soc 163(7):A1157–A1163CrossRef
35.
Zurück zum Zitat Ma ZS, Xie ZC, Wang Y, Zhang PP, Pan Y, Zhou YC, Lu C (2015) Failure modes of hollow core–shell structural active materials during the lithiation–delithiation process. J Power Sources 290:114–122CrossRef Ma ZS, Xie ZC, Wang Y, Zhang PP, Pan Y, Zhou YC, Lu C (2015) Failure modes of hollow core–shell structural active materials during the lithiation–delithiation process. J Power Sources 290:114–122CrossRef
36.
Zurück zum Zitat Deshpande R, Cheng YT, Verbrugge MW, Timmons A (2011) Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. J Electrochem Soc 158(6):A718–A724CrossRef Deshpande R, Cheng YT, Verbrugge MW, Timmons A (2011) Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. J Electrochem Soc 158(6):A718–A724CrossRef
37.
Zurück zum Zitat Purkayastha RT, McMeeking RM (2012) An integrated 2-D model of a lithium ion battery: the effect of material parameters and morphology on storage particle stress. Comput Mech 50(2):209–227CrossRef Purkayastha RT, McMeeking RM (2012) An integrated 2-D model of a lithium ion battery: the effect of material parameters and morphology on storage particle stress. Comput Mech 50(2):209–227CrossRef
38.
Zurück zum Zitat Purkayastha R, McMeeking R (2013) A parameter study of intercalation of lithium into storage particles in a lithium-ion battery. Comput Mater Sci 80:2–14CrossRef Purkayastha R, McMeeking R (2013) A parameter study of intercalation of lithium into storage particles in a lithium-ion battery. Comput Mater Sci 80:2–14CrossRef
39.
Zurück zum Zitat Zhu M, Park J, Sastry AM (2012) Fracture analysis of the cathode in Li-ion batteries: a simulation study. J Electrochem Soc 159(4):A492–A498CrossRef Zhu M, Park J, Sastry AM (2012) Fracture analysis of the cathode in Li-ion batteries: a simulation study. J Electrochem Soc 159(4):A492–A498CrossRef
40.
Zurück zum Zitat Stein P, Zhao Y, Xu BX (2016) Effects of surface tension and electrochemical reactions in Li-ion battery electrode nanoparticles. J Power Sources 332:154–169CrossRef Stein P, Zhao Y, Xu BX (2016) Effects of surface tension and electrochemical reactions in Li-ion battery electrode nanoparticles. J Power Sources 332:154–169CrossRef
41.
Zurück zum Zitat Xu R, Zhao K (2016) Mechanical interactions regulated kinetics and morphology of composite electrodes in Li-ion batteries. Extreme Mech Lett 8:13–21CrossRef Xu R, Zhao K (2016) Mechanical interactions regulated kinetics and morphology of composite electrodes in Li-ion batteries. Extreme Mech Lett 8:13–21CrossRef
42.
Zurück zum Zitat Grantab R, Shenoy VB (2011) Location- and orientation-dependent progressive crack propagation in cylindrical graphite electrode particles. J Electrochem Soc 158(8):A948–A954CrossRef Grantab R, Shenoy VB (2011) Location- and orientation-dependent progressive crack propagation in cylindrical graphite electrode particles. J Electrochem Soc 158(8):A948–A954CrossRef
43.
Zurück zum Zitat Song Y, Lu B, Ji X, Zhang J (2012) Diffusion induced stresses in cylindrical lithium-ion batteries: analytical solutions and design insights. J Electrochem Soc 159(12):A2060–A2068CrossRef Song Y, Lu B, Ji X, Zhang J (2012) Diffusion induced stresses in cylindrical lithium-ion batteries: analytical solutions and design insights. J Electrochem Soc 159(12):A2060–A2068CrossRef
44.
Zurück zum Zitat Chakraborty J, Please CP, Goriely A, Chapman SJ (2015) Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a Li-ion battery. Int J Solids Struct 54:66–81CrossRef Chakraborty J, Please CP, Goriely A, Chapman SJ (2015) Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a Li-ion battery. Int J Solids Struct 54:66–81CrossRef
45.
Zurück zum Zitat Lee SW, McDowell MT, Berla LA, Nix WD, Cui Y (2012) Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc Natl Acad Sci USA 109(11):4080–4085CrossRef Lee SW, McDowell MT, Berla LA, Nix WD, Cui Y (2012) Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc Natl Acad Sci USA 109(11):4080–4085CrossRef
46.
Zurück zum Zitat Hao F, Fang D (2013) Tailoring diffusion-induced stresses of core-shell nanotube electrodes in lithium-ion batteries. J Appl Phys 113(1):013507CrossRef Hao F, Fang D (2013) Tailoring diffusion-induced stresses of core-shell nanotube electrodes in lithium-ion batteries. J Appl Phys 113(1):013507CrossRef
47.
Zurück zum Zitat Damle SS, Pal S, Kumta PN, Maiti S (2016) Effect of silicon configurations on the mechanical integrity of silicon–carbon nanotube heterostructured anode for lithium ion battery: a computational study. J Power Sources 304:373–383CrossRef Damle SS, Pal S, Kumta PN, Maiti S (2016) Effect of silicon configurations on the mechanical integrity of silicon–carbon nanotube heterostructured anode for lithium ion battery: a computational study. J Power Sources 304:373–383CrossRef
48.
Zurück zum Zitat Deshpande R, Cheng YT, Verbrugge MW (2010) Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources 195(15):5081–5088CrossRef Deshpande R, Cheng YT, Verbrugge MW (2010) Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources 195(15):5081–5088CrossRef
49.
Zurück zum Zitat Sikha G, De S, Gordon J (2014) Mathematical model for silicon electrode—part I. 2-d model. J Power Sources 262:514–523CrossRef Sikha G, De S, Gordon J (2014) Mathematical model for silicon electrode—part I. 2-d model. J Power Sources 262:514–523CrossRef
50.
Zurück zum Zitat Chang S, Moon J, Cho K, Cho M (2015) Multiscale analysis of prelithiated silicon nanowire for Li-ion battery. Comput Mater Sci 98:99–104CrossRef Chang S, Moon J, Cho K, Cho M (2015) Multiscale analysis of prelithiated silicon nanowire for Li-ion battery. Comput Mater Sci 98:99–104CrossRef
51.
Zurück zum Zitat Xie Y, Qiu M, Gao X, Guan D, Yuan C (2015) Phase field modeling of silicon nanowire based lithium ion battery composite electrode. Electrochim Acta 186:542–551CrossRef Xie Y, Qiu M, Gao X, Guan D, Yuan C (2015) Phase field modeling of silicon nanowire based lithium ion battery composite electrode. Electrochim Acta 186:542–551CrossRef
52.
Zurück zum Zitat Newman J, Tobias C (1962) Theoretical analysis of current distribution in porous electrodes. J Electrochem Soc 109:1183–1191CrossRef Newman J, Tobias C (1962) Theoretical analysis of current distribution in porous electrodes. J Electrochem Soc 109:1183–1191CrossRef
53.
Zurück zum Zitat Newman J, Tiedemann W (1975) Porous-electrode theory with battery applications. AIChE J 21:25–41CrossRef Newman J, Tiedemann W (1975) Porous-electrode theory with battery applications. AIChE J 21:25–41CrossRef
54.
Zurück zum Zitat Christensen J (2010) Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J Electrochem Soc 157(3):A366–A380CrossRef Christensen J (2010) Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J Electrochem Soc 157(3):A366–A380CrossRef
55.
Zurück zum Zitat Lai W, Ciucci F (2011) Mathematical modeling of porous battery electrodes-revisit of Newman’s model. Electrochim Acta 56(11):4369–4377CrossRef Lai W, Ciucci F (2011) Mathematical modeling of porous battery electrodes-revisit of Newman’s model. Electrochim Acta 56(11):4369–4377CrossRef
56.
Zurück zum Zitat Landstorfer M, Jacob T (2013) Mathematical modeling of intercalation batteries at the cell level and beyond. Chem Soc Rev 42(8):3234–3252CrossRef Landstorfer M, Jacob T (2013) Mathematical modeling of intercalation batteries at the cell level and beyond. Chem Soc Rev 42(8):3234–3252CrossRef
57.
Zurück zum Zitat Zheng JP, Crain DJ, Roy D (2011) Kinetic aspects of Li intercalation in mechano-chemically processed cathode materials for lithium ion batteries: electrochemical characterization of ball-milled LiMn2O4. Solid State Ion 196:48–58CrossRef Zheng JP, Crain DJ, Roy D (2011) Kinetic aspects of Li intercalation in mechano-chemically processed cathode materials for lithium ion batteries: electrochemical characterization of ball-milled LiMn2O4. Solid State Ion 196:48–58CrossRef
58.
Zurück zum Zitat Chung DW, Shearing PR, Brandon NP, Harris SJ, Garcia RE (2014) Particle size polydispersity in Li-ion batteries. J Electrochem Soc 161(3):A422–A430CrossRef Chung DW, Shearing PR, Brandon NP, Harris SJ, Garcia RE (2014) Particle size polydispersity in Li-ion batteries. J Electrochem Soc 161(3):A422–A430CrossRef
59.
Zurück zum Zitat Vanimisetti SK, Ramakrishnan N (2011) Effect of the electrode particle shape in Li-ion battery on the mechanical degradation during charge–discharge cycling. Proc IMechE Part C J Mech Eng Sci 226(9):2192–2213CrossRef Vanimisetti SK, Ramakrishnan N (2011) Effect of the electrode particle shape in Li-ion battery on the mechanical degradation during charge–discharge cycling. Proc IMechE Part C J Mech Eng Sci 226(9):2192–2213CrossRef
60.
Zurück zum Zitat Harris SJ, Rahani EK, Shenoy VB (2012) Direct in situ observation and numerical simulations of non-shrinking-core behavior in an MCMB graphite composite electrode. J Electrochem Soc 159(9):A1501–A1507CrossRef Harris SJ, Rahani EK, Shenoy VB (2012) Direct in situ observation and numerical simulations of non-shrinking-core behavior in an MCMB graphite composite electrode. J Electrochem Soc 159(9):A1501–A1507CrossRef
61.
Zurück zum Zitat Wu W, Xiao X, Wang M, Huang X (2014) A microstructural resolved model for the stress analysis of lithium-ion batteries. J Electrochem Soc 161(5):A803–A813CrossRef Wu W, Xiao X, Wang M, Huang X (2014) A microstructural resolved model for the stress analysis of lithium-ion batteries. J Electrochem Soc 161(5):A803–A813CrossRef
62.
Zurück zum Zitat Hu S, Li Y, Rosso KM, Sushko ML (2013) Mesoscale phase-field modeling of charge transport in nanocomposite electrodes for lithium-ion batteries. J Phys Chem C 117(1):28–40CrossRef Hu S, Li Y, Rosso KM, Sushko ML (2013) Mesoscale phase-field modeling of charge transport in nanocomposite electrodes for lithium-ion batteries. J Phys Chem C 117(1):28–40CrossRef
63.
Zurück zum Zitat Wu L, Zhang Y, Jung YG, Zhang J (2015) Three-dimensional phase field based finite element study on Li intercalation-induced stress in polycrystalline LiCoO2. J Power Sources 299:57–65CrossRef Wu L, Zhang Y, Jung YG, Zhang J (2015) Three-dimensional phase field based finite element study on Li intercalation-induced stress in polycrystalline LiCoO2. J Power Sources 299:57–65CrossRef
64.
Zurück zum Zitat Jokar A, Rajabloo B, Désilets M, Lacroix M (2016) Review of simplified pseudo-two-dimensional models of lithium-ion batteries. J Power Sources 327:44–55CrossRef Jokar A, Rajabloo B, Désilets M, Lacroix M (2016) Review of simplified pseudo-two-dimensional models of lithium-ion batteries. J Power Sources 327:44–55CrossRef
65.
Zurück zum Zitat Guo Z, Zhu J, Feng J, Du S (2015) Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes. RSC Adv 5:69514–69521CrossRef Guo Z, Zhu J, Feng J, Du S (2015) Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes. RSC Adv 5:69514–69521CrossRef
66.
Zurück zum Zitat Lampe-Onnerud C, Shi J, Onnerud P, Chamberlain R, Barnett B (2011) Benchmark study on high performing carbon anode materials. J Power Sources 97–98:133–136 Lampe-Onnerud C, Shi J, Onnerud P, Chamberlain R, Barnett B (2011) Benchmark study on high performing carbon anode materials. J Power Sources 97–98:133–136
67.
Zurück zum Zitat Takahashi K, Srinivasan V (2015) Examination of graphite particle cracking as a failure mode in lithium-ion batteries: a model-experimental study. J Electrochem Soc 162(4):A635–A645CrossRef Takahashi K, Srinivasan V (2015) Examination of graphite particle cracking as a failure mode in lithium-ion batteries: a model-experimental study. J Electrochem Soc 162(4):A635–A645CrossRef
68.
Zurück zum Zitat Lu Y, Ni Y (2015) Effects of particle shape and concurrent plasticity on stress generation during lithiation in particulate Li-ion battery electrodes. Mech Mater 91:372–381CrossRef Lu Y, Ni Y (2015) Effects of particle shape and concurrent plasticity on stress generation during lithiation in particulate Li-ion battery electrodes. Mech Mater 91:372–381CrossRef
69.
Zurück zum Zitat Takahashi K, Higa K, Mair S, Chintapalli M, Balsara N, Srinivasan V (2016) Mechanical degradation of graphite/PVDF composite electrodes: a model-experimental study. J Electrochem Soc 163(3):A385–A395CrossRef Takahashi K, Higa K, Mair S, Chintapalli M, Balsara N, Srinivasan V (2016) Mechanical degradation of graphite/PVDF composite electrodes: a model-experimental study. J Electrochem Soc 163(3):A385–A395CrossRef
70.
Zurück zum Zitat Wu B, Lu W (2016) Mechanical-electrochemical modeling of agglomerate particles in lithium-ion battery electrodes. J Electrochem Soc 163(14):A3131–A3139CrossRef Wu B, Lu W (2016) Mechanical-electrochemical modeling of agglomerate particles in lithium-ion battery electrodes. J Electrochem Soc 163(14):A3131–A3139CrossRef
71.
Zurück zum Zitat Stein P, Xu B (2014) 3D isogeometric analysis of intercalation-induced stresses in Li-ion battery electrode particles. Comput Method Appl Mech 268:225–244CrossRef Stein P, Xu B (2014) 3D isogeometric analysis of intercalation-induced stresses in Li-ion battery electrode particles. Comput Method Appl Mech 268:225–244CrossRef
72.
Zurück zum Zitat Harris SJ, Deshpande RD, Qi Y, Dutta I, Cheng YT (2010) Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress. J Mater Res 25(8):1433–1440CrossRef Harris SJ, Deshpande RD, Qi Y, Dutta I, Cheng YT (2010) Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress. J Mater Res 25(8):1433–1440CrossRef
73.
Zurück zum Zitat Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford
74.
Zurück zum Zitat Ru CQ (1998) Effect of interphase layers on thermal stresses within an elliptical inclusion. J Appl Phys 84:4872–4879CrossRef Ru CQ (1998) Effect of interphase layers on thermal stresses within an elliptical inclusion. J Appl Phys 84:4872–4879CrossRef
75.
Zurück zum Zitat Muskhelishvili NI (1977) Some basic problems of the mathematical theory of elasticity, 2nd edn. Noordhoff International Publishing, Groningen Muskhelishvili NI (1977) Some basic problems of the mathematical theory of elasticity, 2nd edn. Noordhoff International Publishing, Groningen
76.
Zurück zum Zitat Timoshenko S, Goodier JN (1951) Theory of elasticity, 2nd edn. McGraw-Hill Press, New York Timoshenko S, Goodier JN (1951) Theory of elasticity, 2nd edn. McGraw-Hill Press, New York
Metadaten
Titel
Analytical solutions and numerical simulations of diffusion-induced stresses and concentration distributions in porous electrodes with particles of different size and shape
verfasst von
Zhansheng Guo
Liang Ji
Lei Chen
Publikationsdatum
10.08.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1455-1

Weitere Artikel der Ausgabe 23/2017

Journal of Materials Science 23/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.