Skip to main content
Erschienen in: Thermal Engineering 11/2022

01.11.2022 | NUCLEAR POWER PLANTS

Analyzing the Thermal Characteristics of a Small Capacity NPP Thermal Power Circuit with Nonaqueous Working Fluids

verfasst von: A. A. Sukhikh, I. S. Antanenkova, Tran Quoc Thinh

Erschienen in: Thermal Engineering | Ausgabe 11/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract—

Predesign assessment of prospects for developing small capacity nuclear power plant (SCNPP) thermal power circuits operating with various nonaqueous working fluids is given. The article presents the results obtained from an analysis of makeup versions of the SCNPP secondary (turbine) circuit, the primary circuit of which is an autonomous microfuel molten salt cooled reactor (MARS). The thermal process schemes of an open-loop air gas turbine unit without regeneration, a gas turbine unit with two-stage air compression in a compressor and regeneration, and a fluorocarbon turbine unit that uses octafluoropropane (C3F8) as working fluid and operates according to the organic Rankine cycle are considered. The possibility of reaching the highest thermodynamic efficiency of thermal energy conversion on the basis of a fluorocarbone turbine unit (FTU) that uses octafluoropropane as working fluid at temperatures up to 650°C is shown. The design cycle efficiency of such a unit exceeds 50%, whereas that of a gas turbine unit (GTU) without regeneration is no more than 33%. The main thermal, mass, and dimensional characteristics of the SCNPP thermal power circuit equipment for the proposed makeup versions are compared with one another. It has been found that the main technical problem faced in designing and introducing the thermal power equipment of the GTU-based secondary circuit will be the mass and dimension characteristics of the reactor core heat exchanger and the air-to-air regenerator in view of low heat-transfer coefficients. It is shown that the use of octafluoropropane as the turbine circuit’s working fluid will make it possible to design the main apparatuses with essentially more compact mass and dimension characteristics and, hence, to decrease the hydraulic losses in them and reduce their cost. The obtained results testify that mass of regenerative apparatuses operating on octafluoropropane can be decreased in comparison with that of their air-cooled analogs by up to 15 times. Based on the obtained analysis results, a list of first-priority technical problems has been formulated, the solution of which will make it possible to successfully develop the SCNPP thermal power circuit.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The subscript “sm” denotes a “salt melt.”
 
2
Regenerators, as they are usually called, although, if classified according to the heat transfer organization principle, they are recuperators.
 
3
An elementary cell of two channels with the same cross section area (f1 = f2), with the heating flow moving through one of which and heated flow moving through the other.
 
4
The variation of the thermophysical properties of heating and heated air had an insignificant influence on the heat-transfer coefficient with the specified calculation parameters.
 
5
FTU–Fluorocarbon Turbine Unit.
 
6
Here and henceforth, the subscript “f” denotes fluid or fluorocarbon.
 
Literatur
1.
Zurück zum Zitat Low-Power Nuclear Power Plants — A New Line in the Development of Power Systems, Ed. by A. A. Sarkisov (Nauka, Moscow, 2011) [in Russian]. Low-Power Nuclear Power Plants — A New Line in the Development of Power Systems, Ed. by A. A. Sarkisov (Nauka, Moscow, 2011) [in Russian].
2.
Zurück zum Zitat P. N. Alekseev, Yu. N. Udyanskii, T. D. Shchepetina, and P. A. Fomichenko, Small Nuclear Power Plants — Primary Avenue for Reducing Risks and their Consequences in Nuclear Power: Monograph (KDU, Univ. Kniga, Moscow, 2020) [in Russian]. P. N. Alekseev, Yu. N. Udyanskii, T. D. Shchepetina, and P. A. Fomichenko, Small Nuclear Power Plants — Primary Avenue for Reducing Risks and their Consequences in Nuclear Power: Monograph (KDU, Univ. Kniga, Moscow, 2020) [in Russian].
3.
Zurück zum Zitat Nuclear Energy. Liquid-Salt Nuclear Energy Plants. Problems and Prospects. Expert Assessments (Energoatomizdat, Moscow, 1989) [in Russian]. Nuclear Energy. Liquid-Salt Nuclear Energy Plants. Problems and Prospects. Expert Assessments (Energoatomizdat, Moscow, 1989) [in Russian].
4.
Zurück zum Zitat Nuclear Energy. Problems and Prospects. Expert Assessments (Energoatomizdat, Moscow, 1989) [in Russian]. Nuclear Energy. Problems and Prospects. Expert Assessments (Energoatomizdat, Moscow, 1989) [in Russian].
5.
Zurück zum Zitat A. S. Chernikov, L. N. Permyakov, I. I. Fedik, S. S. Gavrilin, and S. D. Kurbakov, “Fuel elements based on spherical fuel pellets with a protective coating for enhanced-safety reactors,” At. Energy 87, 871–883 (1999).CrossRef A. S. Chernikov, L. N. Permyakov, I. I. Fedik, S. S. Gavrilin, and S. D. Kurbakov, “Fuel elements based on spherical fuel pellets with a protective coating for enhanced-safety reactors,” At. Energy 87, 871–883 (1999).CrossRef
6.
Zurück zum Zitat P. N. Alekseev, I. A. Belov, N. N. Ponomarev-Stepnoi, N. E. Kukharkin, S. A. Subbotin, Yu. N. Udyanskii, A. V. Chibinyaev, T. D. Shchepetina, and P. A. Fomichenko, “MARS low-power liquid-salt micropellet-fuel reactor,” At. Energy 93, 537–546 (2002).CrossRef P. N. Alekseev, I. A. Belov, N. N. Ponomarev-Stepnoi, N. E. Kukharkin, S. A. Subbotin, Yu. N. Udyanskii, A. V. Chibinyaev, T. D. Shchepetina, and P. A. Fomichenko, “MARS low-power liquid-salt micropellet-fuel reactor,” At. Energy 93, 537–546 (2002).CrossRef
7.
Zurück zum Zitat NIST REFPROP DATABASE Version 8.0 — Database of Thermophysical and Transport Properties of Substances. NIST REFPROP DATABASE Version 8.0 — Database of Thermophysical and Transport Properties of Substances.
8.
Zurück zum Zitat Theoretical Fundamentals of Thermal Technology. Thermotechnological Experiment: Reference Book Series, Vol. 2: Thermal Power Engineering and Thermal Technology, Ed. by A. V. Klimenko and V. M. Zorin, 4th ed. (Mosk. Energ. Inst., Moscow, 2007) [in Russian]. Theoretical Fundamentals of Thermal Technology. Thermotechnological Experiment: Reference Book Series, Vol. 2: Thermal Power Engineering and Thermal Technology, Ed. by A. V. Klimenko and V. M. Zorin, 4th ed. (Mosk. Energ. Inst., Moscow, 2007) [in Russian].
9.
Zurück zum Zitat B. A. Grigor’ev, V. V. Remizov, A. D. Sedykh, and A. P. Solodov, Efficiency of Using Energy Resources in the Provision of Gas Transportation (Mosk. Energ. Inst., Moscow, 1999) [in Russian]. B. A. Grigor’ev, V. V. Remizov, A. D. Sedykh, and A. P. Solodov, Efficiency of Using Energy Resources in the Provision of Gas Transportation (Mosk. Energ. Inst., Moscow, 1999) [in Russian].
10.
Zurück zum Zitat D. P. Gokhshtein, G. F. Smirnov, and V. S. Kirov, “Some features of steam–gas schemes with non-water vapors,” Teploenergetika, No. 1, 20–24 (1966). D. P. Gokhshtein, G. F. Smirnov, and V. S. Kirov, “Some features of steam–gas schemes with non-water vapors,” Teploenergetika, No. 1, 20–24 (1966).
11.
Zurück zum Zitat A. A. Sukhikh, Study of Thermodynamic Properties and Thermal Characteristics of Organofluorine Working Substances, Doctoral Dissertation in Engineering (Moscow Power Enginering Inst., Moscow, 2012). A. A. Sukhikh, Study of Thermodynamic Properties and Thermal Characteristics of Organofluorine Working Substances, Doctoral Dissertation in Engineering (Moscow Power Enginering Inst., Moscow, 2012).
12.
Zurück zum Zitat K. I. Kuznetsov, Experimental and Calculational Study of Thermodynamic Properties of Octafluoropropane and Decafluorobutane, Candidate’s Dossertation in Engineering (Moscow Power Enginering Inst., Moscow, 2009). K. I. Kuznetsov, Experimental and Calculational Study of Thermodynamic Properties of Octafluoropropane and Decafluorobutane, Candidate’s Dossertation in Engineering (Moscow Power Enginering Inst., Moscow, 2009).
13.
Zurück zum Zitat A. A. Sukhikh, V. A. Milyutin, and I. S. Antanenkova, “Thermodynamic efficiency of fluorocarbons as working media in thermal power cycles of nuclear power plants,” Elektr. Stn., No. 10, 2–8 (2010). A. A. Sukhikh, V. A. Milyutin, and I. S. Antanenkova, “Thermodynamic efficiency of fluorocarbons as working media in thermal power cycles of nuclear power plants,” Elektr. Stn., No. 10, 2–8 (2010).
14.
Zurück zum Zitat M. S. Morkin, V. V. Lemekhov, A. A. Sukhikh, and I. M. Mazurin, “Potential of fluorocarbon gases as working media for nuclear power plants,” Nadezhnost Bezop. Energ., No. 4 (31), 46–49 (2015). M. S. Morkin, V. V. Lemekhov, A. A. Sukhikh, and I. M. Mazurin, “Potential of fluorocarbon gases as working media for nuclear power plants,” Nadezhnost Bezop. Energ., No. 4 (31), 46–49 (2015).
15.
Zurück zum Zitat M. S. Morkin, V. V. Lemekhov, Yu. S. Cherepnin, I. M. Mazurin, and A. A. Sukhikh, “Review of results and methods of comprehensive research of eview of results and methods of comprehensive research of working substances of fluoroorganic composition of power plants orking substances of fluoroorganic composition of power plant,” Nadezhnost Bezop. Energ. 10, 135–142 (2017).CrossRef M. S. Morkin, V. V. Lemekhov, Yu. S. Cherepnin, I. M. Mazurin, and A. A. Sukhikh, “Review of results and methods of comprehensive research of eview of results and methods of comprehensive research of working substances of fluoroorganic composition of power plants orking substances of fluoroorganic composition of power plant,” Nadezhnost Bezop. Energ. 10, 135–142 (2017).CrossRef
16.
Zurück zum Zitat I. M. Mazurin, A. F. Korolev, R. L. Gerasimov, and D. I. Mazurin, “Systemic crisis in the choice of working media of power plants,” Prostranstvo Vremya: Al’m. 2 (1) (2013). I. M. Mazurin, A. F. Korolev, R. L. Gerasimov, and D. I. Mazurin, “Systemic crisis in the choice of working media of power plants,” Prostranstvo Vremya: Al’m. 2 (1) (2013).
17.
Zurück zum Zitat R. Z. Aminov, V. E. Yurin, and M. A. Murtazov, “A method for increasing the power and safety of a nuclear power plant’s power unit with a VVER-type reactor based on thermal storage,” RF Patent No. 2680380, MPK G21D 5/00, Byull. Izobret., No. 5 (2019). R. Z. Aminov, V. E. Yurin, and M. A. Murtazov, “A method for increasing the power and safety of a nuclear power plant’s power unit with a VVER-type reactor based on thermal storage,” RF Patent No. 2680380, MPK G21D 5/00, Byull. Izobret., No. 5 (2019).
Metadaten
Titel
Analyzing the Thermal Characteristics of a Small Capacity NPP Thermal Power Circuit with Nonaqueous Working Fluids
verfasst von
A. A. Sukhikh
I. S. Antanenkova
Tran Quoc Thinh
Publikationsdatum
01.11.2022
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 11/2022
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601522110088

Weitere Artikel der Ausgabe 11/2022

Thermal Engineering 11/2022 Zur Ausgabe

RENEWABLE ENERGY SOURCES, HYDROPOWER ENGINEERING

Integrated Aluminum-Water Technology for Hydrogen Production

    Premium Partner