Skip to main content
Erschienen in: Journal of Materials Science 17/2021

24.02.2021 | Energy materials

Anchored CoCO3 on peeled graphite sheets toward high-capacity lithium-ion battery anode

verfasst von: Guocui Xi, Xun Jiao, Qimeng Peng, Tianbiao Zeng

Erschienen in: Journal of Materials Science | Ausgabe 17/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transition metal carbonates are attracting significant interests as lithium-ion batteries (LIBs) anode due to their high specific capacity and initial Coulombic efficiency. However, the internal poor conductivity and volume variation hinder their application. In this work, we report an approach to crush CoCO3 and peel graphite synchronously, in which the crushed CoCO3 was anchored on peeled graphite sheets via one step ball-milling method. The peeled graphite sheets act as electron conductive layers and can relax the volume expansion/shrink of CoCO3 during lithiation/de-lithiation. The graphite was peeled to 4.5 layers averagely, and the CoCO3 was crushed to particles of less than 500 nm simultaneously. CoCO3 particles play the role of high capacity function material in CoCO3/graphene (CoCO3/G) anode. The CoCO3/G electrode exhibits an initial capacity of 1314 mAh g−1 and 661 mAh g−1 at 200th cycle at 100 mA g−1. Such facile method is promising for obtaining various graphene-anchored composites with improved electrochemical performances.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303CrossRef Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303CrossRef
2.
Zurück zum Zitat Goodenough JB (2015) Energy storage materials: a perspective. Energy Storage Mater 1:158–161CrossRef Goodenough JB (2015) Energy storage materials: a perspective. Energy Storage Mater 1:158–161CrossRef
3.
Zurück zum Zitat Larcher D, Tarascon JM (2014) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29CrossRef Larcher D, Tarascon JM (2014) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29CrossRef
4.
Zurück zum Zitat Ji L, Lin Z, Alcoutlabi M et al (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699CrossRef Ji L, Lin Z, Alcoutlabi M et al (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699CrossRef
5.
Zurück zum Zitat Tang X, Wei Y, Zhang H et al (2015) The positive influence of graphene on the mechanical and electrochemical properties of SnxSb-graphene-carbon porous mats as binder-free electrodes for Li+ storage. Electrochim Acta 186:223–230CrossRef Tang X, Wei Y, Zhang H et al (2015) The positive influence of graphene on the mechanical and electrochemical properties of SnxSb-graphene-carbon porous mats as binder-free electrodes for Li+ storage. Electrochim Acta 186:223–230CrossRef
6.
Zurück zum Zitat Lu Y, Yu L, Lou XW (2018) Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Joule 4:972–996 Lu Y, Yu L, Lou XW (2018) Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Joule 4:972–996
7.
Zurück zum Zitat Shi M, Huang Z, Liu H et al (2019) Ultralow nitrogen-doped carbon coupled carbon-doped Co3O4 microrods with tunable electron configurations for advanced Li-storage properties. Electrochim Acta 237:135059–135066CrossRef Shi M, Huang Z, Liu H et al (2019) Ultralow nitrogen-doped carbon coupled carbon-doped Co3O4 microrods with tunable electron configurations for advanced Li-storage properties. Electrochim Acta 237:135059–135066CrossRef
8.
Zurück zum Zitat Liu Y, Chen J, Liu Z et al (2020) Facile fabrication of Fe3O4 nanoparticle/carbon nanofiber aerogel from Fe-ion cross-linked cellulose nanofibrils as anode for lithium-ion battery with superhigh capacity. J Alloy Compd 829:154541–154550CrossRef Liu Y, Chen J, Liu Z et al (2020) Facile fabrication of Fe3O4 nanoparticle/carbon nanofiber aerogel from Fe-ion cross-linked cellulose nanofibrils as anode for lithium-ion battery with superhigh capacity. J Alloy Compd 829:154541–154550CrossRef
9.
Zurück zum Zitat Wang K, Shi Y, Li H et al (2016) Assembly of MnCO3 nanoplatelets synthesized at low temperature on graphene to achieve anode materials with high rate performance for lithium-ion batteries. Electrochim Acta 215:267–275CrossRef Wang K, Shi Y, Li H et al (2016) Assembly of MnCO3 nanoplatelets synthesized at low temperature on graphene to achieve anode materials with high rate performance for lithium-ion batteries. Electrochim Acta 215:267–275CrossRef
10.
Zurück zum Zitat Hu L, Zheng S, Cheng S et al (2019) Micro/nano-structured Ag coated VPO4/C as a high-performance anode material for lithium-ion batteries. Mater Lett 246:40–44CrossRef Hu L, Zheng S, Cheng S et al (2019) Micro/nano-structured Ag coated VPO4/C as a high-performance anode material for lithium-ion batteries. Mater Lett 246:40–44CrossRef
11.
Zurück zum Zitat Zhang J, Jiang H, Zeng Y et al (2019) Oxygen-defective Co3O4 for pseudo-capacitive lithium storage. J Power Sources 439:227026–227037CrossRef Zhang J, Jiang H, Zeng Y et al (2019) Oxygen-defective Co3O4 for pseudo-capacitive lithium storage. J Power Sources 439:227026–227037CrossRef
12.
Zurück zum Zitat Lander L, Tarascon JM, Yamada A (2018) Sulfate-based cathode materials for Li and Na-ion batteries. Chem Rec 18:1394–1408CrossRef Lander L, Tarascon JM, Yamada A (2018) Sulfate-based cathode materials for Li and Na-ion batteries. Chem Rec 18:1394–1408CrossRef
13.
Zurück zum Zitat Fu W, Zhao E, Sun Z et al (2018) Iron fluoride-carbon nanocomposite nanofibers as free-standing cathodes for high-energy lithium batteries. Adv Funct Mater 28:1801711–1801719CrossRef Fu W, Zhao E, Sun Z et al (2018) Iron fluoride-carbon nanocomposite nanofibers as free-standing cathodes for high-energy lithium batteries. Adv Funct Mater 28:1801711–1801719CrossRef
14.
Zurück zum Zitat Zou R, Xu M, He SA et al (2018) Cobalt nickel nitride coated by a thin carbon layer anchoring on nitrogen-doped carbon nanotube anodes for high-performance lithium-ion batteries. J Mater Chem A 6:19853–19862CrossRef Zou R, Xu M, He SA et al (2018) Cobalt nickel nitride coated by a thin carbon layer anchoring on nitrogen-doped carbon nanotube anodes for high-performance lithium-ion batteries. J Mater Chem A 6:19853–19862CrossRef
15.
Zurück zum Zitat Tang L, Xiao B, An C (2018) VPO4@C/graphene microsphere as a potential anode material for lithium-ion batteries. Ceram Int 44:14432–14438CrossRef Tang L, Xiao B, An C (2018) VPO4@C/graphene microsphere as a potential anode material for lithium-ion batteries. Ceram Int 44:14432–14438CrossRef
16.
Zurück zum Zitat Zhao Y, Mu Y, Wang L (2019) MnCO3-RGO composite anode materials: In-situ solvothermal synthesis and electrochemical performances. Electrochim Acta 317:786–794CrossRef Zhao Y, Mu Y, Wang L (2019) MnCO3-RGO composite anode materials: In-situ solvothermal synthesis and electrochemical performances. Electrochim Acta 317:786–794CrossRef
17.
Zurück zum Zitat Zhang C, Cai X, Xu D et al (2018) Mn doped FeCO3/reduced graphene composite as anode material for high performance lithium-ion batteries. Appl Surf Sci 428:73–81CrossRef Zhang C, Cai X, Xu D et al (2018) Mn doped FeCO3/reduced graphene composite as anode material for high performance lithium-ion batteries. Appl Surf Sci 428:73–81CrossRef
18.
Zurück zum Zitat Shi S, Zhang M, Liu Y et al (2018) Efficient construction of a CoCO3/graphene composite anode material for lithium-ion batteries by stirring solvothermal reaction. Ceram In 44:3718–3725 Shi S, Zhang M, Liu Y et al (2018) Efficient construction of a CoCO3/graphene composite anode material for lithium-ion batteries by stirring solvothermal reaction. Ceram In 44:3718–3725
19.
Zurück zum Zitat Ding Z, Qin X, You C et al (2018) Different solid electrolyte interface and anode performance of CoCO3 microspheres due to graphene modification and LiCoO2||CoCO3@rGO full cell study. Electrochim Acta 270:192–204CrossRef Ding Z, Qin X, You C et al (2018) Different solid electrolyte interface and anode performance of CoCO3 microspheres due to graphene modification and LiCoO2||CoCO3@rGO full cell study. Electrochim Acta 270:192–204CrossRef
20.
Zurück zum Zitat Lu Z, Wang H, Zhou T et al (2018) CoCO3 micrometer particles stabilized by carbon nanofibers networks as composite electrode for enhanced rate and cyclic performance of lithium-ion batteries. Electrochim Acta 270:22–29CrossRef Lu Z, Wang H, Zhou T et al (2018) CoCO3 micrometer particles stabilized by carbon nanofibers networks as composite electrode for enhanced rate and cyclic performance of lithium-ion batteries. Electrochim Acta 270:22–29CrossRef
21.
Zurück zum Zitat Ding Z, Yao B, Feng J et al (2013) Enhanced rate performance and cycling stability of a CoCO3-polypyrrole composite for lithium-ion battery anodes. J Mater Chem A 1:11200–11209CrossRef Ding Z, Yao B, Feng J et al (2013) Enhanced rate performance and cycling stability of a CoCO3-polypyrrole composite for lithium-ion battery anodes. J Mater Chem A 1:11200–11209CrossRef
22.
Zurück zum Zitat Yin J, Ding Z, Lei D et al (2017) Zn-substituted CoCO3 embedded in carbon nanotubes network as high performance anode for lithium-ion batteries. J Alloy Compd 712:605–612CrossRef Yin J, Ding Z, Lei D et al (2017) Zn-substituted CoCO3 embedded in carbon nanotubes network as high performance anode for lithium-ion batteries. J Alloy Compd 712:605–612CrossRef
23.
Zurück zum Zitat Raccichini R, Varzi A, Passerini S et al (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271–279CrossRef Raccichini R, Varzi A, Passerini S et al (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271–279CrossRef
24.
Zurück zum Zitat Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312CrossRef Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312CrossRef
25.
Zurück zum Zitat Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132CrossRef Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132CrossRef
26.
Zurück zum Zitat Wu ZS, Zhou G, Yin LC et al (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131CrossRef Wu ZS, Zhou G, Yin LC et al (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131CrossRef
27.
Zurück zum Zitat Chabot V, Higgins D, Yu A et al (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7:1564–1596CrossRef Chabot V, Higgins D, Yu A et al (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7:1564–1596CrossRef
28.
Zurück zum Zitat Endo K, Zhang HP, Fu LJ et al (2006) Electrochemical performance of a novel surface modified spherical graphite as anode material for lithium-ion batteries. J Appl Electrochem 36:1307–1310CrossRef Endo K, Zhang HP, Fu LJ et al (2006) Electrochemical performance of a novel surface modified spherical graphite as anode material for lithium-ion batteries. J Appl Electrochem 36:1307–1310CrossRef
29.
Zurück zum Zitat Zeng TB, Zhang CH (2019) Facile-synthesized amorphous CoCO3 for high-capacity lithium-ion battery anode. Ionics 25:4149–4159CrossRef Zeng TB, Zhang CH (2019) Facile-synthesized amorphous CoCO3 for high-capacity lithium-ion battery anode. Ionics 25:4149–4159CrossRef
30.
Zurück zum Zitat Charati SG, Stern SA (1998) Diffusion of gases in silicone polymers: molecular dynamics simulations. Macromolecules 31:5529–5535CrossRef Charati SG, Stern SA (1998) Diffusion of gases in silicone polymers: molecular dynamics simulations. Macromolecules 31:5529–5535CrossRef
31.
Zurück zum Zitat Hu K, Li H, Qi L et al (2020) Preparation and physicochemical properties of nitrogen-doped graphene inks. New Carbon Mater 35:444–451CrossRef Hu K, Li H, Qi L et al (2020) Preparation and physicochemical properties of nitrogen-doped graphene inks. New Carbon Mater 35:444–451CrossRef
32.
Zurück zum Zitat Gallegos-Pérez WR, Reynosa-Martínez AC, Soto-Ortiz C et al (2019) Effect of UV radiation on the structure of graphene oxide in water and its impact on cytotoxicity and As(III) adsorption. Chemosphere 249:126160–126184CrossRef Gallegos-Pérez WR, Reynosa-Martínez AC, Soto-Ortiz C et al (2019) Effect of UV radiation on the structure of graphene oxide in water and its impact on cytotoxicity and As(III) adsorption. Chemosphere 249:126160–126184CrossRef
33.
Zurück zum Zitat Wang L, Shi M, Yang C et al (2019) Amorphous MnSiO3 confined in graphene sheets for superior lithium-ion batteries. J Alloy Compd 804:243–251CrossRef Wang L, Shi M, Yang C et al (2019) Amorphous MnSiO3 confined in graphene sheets for superior lithium-ion batteries. J Alloy Compd 804:243–251CrossRef
34.
Zurück zum Zitat Nan X, Liu C, Wang K et al (2016) Amorphous VPO4/C with the enhanced performances as an anode for lithium-ion batteries. J Materiomics 2:350–357CrossRef Nan X, Liu C, Wang K et al (2016) Amorphous VPO4/C with the enhanced performances as an anode for lithium-ion batteries. J Materiomics 2:350–357CrossRef
35.
Zurück zum Zitat Zhao Z, Wang Z, Denis DK et al (2019) Intrinsic lithium storage mechanisms and superior electrochemical behaviors of monodispersed hierarchical CoCO3 sub-microspheroids as a competitive anode towards Li-ion batteries. Electrochim Acta 307:20–29CrossRef Zhao Z, Wang Z, Denis DK et al (2019) Intrinsic lithium storage mechanisms and superior electrochemical behaviors of monodispersed hierarchical CoCO3 sub-microspheroids as a competitive anode towards Li-ion batteries. Electrochim Acta 307:20–29CrossRef
36.
Zurück zum Zitat Huang S, Yang L, Gao M et al (2019) Free-standing 3D composite of CoO nanocrystals anchored on carbon nanotubes as high-power anodes in Li-Ion hybrid supercapacitors. J Power Sources 437:226934–226945CrossRef Huang S, Yang L, Gao M et al (2019) Free-standing 3D composite of CoO nanocrystals anchored on carbon nanotubes as high-power anodes in Li-Ion hybrid supercapacitors. J Power Sources 437:226934–226945CrossRef
37.
Zurück zum Zitat Su L, Zhou Z, Qin X et al (2013) CoCO3 submicrocube/graphene composites with high lithium storage capability. Nano Energy 2:276–282CrossRef Su L, Zhou Z, Qin X et al (2013) CoCO3 submicrocube/graphene composites with high lithium storage capability. Nano Energy 2:276–282CrossRef
38.
Zurück zum Zitat Li H, Tseng C, Yang C et al (2017) Eco-efficient synthesis of highly-porous CoCO3 anodes for Li+ and Na+ storage using supercritical CO2 precursors. Chemsuschem 10:2464–2472CrossRef Li H, Tseng C, Yang C et al (2017) Eco-efficient synthesis of highly-porous CoCO3 anodes for Li+ and Na+ storage using supercritical CO2 precursors. Chemsuschem 10:2464–2472CrossRef
39.
Zurück zum Zitat Dong S, Shen L, Li H et al (2015) Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors. J Mater Chem A 3:21277–21283CrossRef Dong S, Shen L, Li H et al (2015) Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors. J Mater Chem A 3:21277–21283CrossRef
40.
Zurück zum Zitat Ni J, Fu S, Wu C et al (2016) Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv Energy Mater 6:150268–1502576CrossRef Ni J, Fu S, Wu C et al (2016) Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv Energy Mater 6:150268–1502576CrossRef
41.
Zurück zum Zitat Hu X, Peng Q, Zeng T et al (2019) Promotional role of nano TiO2 for pomegranate-like SnS2@C spheres toward enhanced sodium ion storage. Chem Eng J 363:213–223CrossRef Hu X, Peng Q, Zeng T et al (2019) Promotional role of nano TiO2 for pomegranate-like SnS2@C spheres toward enhanced sodium ion storage. Chem Eng J 363:213–223CrossRef
42.
Zurück zum Zitat Chao D, Zhu C, Yang P et al (2016) Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun 7:12122–12130CrossRef Chao D, Zhu C, Yang P et al (2016) Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun 7:12122–12130CrossRef
43.
Zurück zum Zitat Chao D, Liang P, Chen Z et al (2016) Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10:10211–10219CrossRef Chao D, Liang P, Chen Z et al (2016) Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10:10211–10219CrossRef
44.
Zurück zum Zitat Xia X, Chao D, Zhang Y et al (2016) Synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 12:3048–3058CrossRef Xia X, Chao D, Zhang Y et al (2016) Synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 12:3048–3058CrossRef
45.
Zurück zum Zitat Cui S, Wei Y, Liu T et al (2015) Optimized temperature effect of Li-ion diffusion with layer distance in Li(Nix Mny Coz )O2 cathode materials for high performance Li-ion battery. Adv Energy Mater 6:1501309–1501318CrossRef Cui S, Wei Y, Liu T et al (2015) Optimized temperature effect of Li-ion diffusion with layer distance in Li(Nix Mny Coz )O2 cathode materials for high performance Li-ion battery. Adv Energy Mater 6:1501309–1501318CrossRef
46.
Zurück zum Zitat Hu X, Shang B, Zeng T et al (2019) Zhang, Core-shell (nano-SnX/nano-Li4Ti5O12)@C spheres (X = Se, Te) with high volumetric capacity and excellent cycle stability for lithium-ion batteries. Nanoscale 11:23268–23274CrossRef Hu X, Shang B, Zeng T et al (2019) Zhang, Core-shell (nano-SnX/nano-Li4Ti5O12)@C spheres (X = Se, Te) with high volumetric capacity and excellent cycle stability for lithium-ion batteries. Nanoscale 11:23268–23274CrossRef
47.
Zurück zum Zitat Tang K, Yu X, Sun J et al (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56:4869–4875CrossRef Tang K, Yu X, Sun J et al (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56:4869–4875CrossRef
48.
Zurück zum Zitat Ding N, Xu J, Yao YX et al (2019) Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ion 180:222–225CrossRef Ding N, Xu J, Yao YX et al (2019) Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ion 180:222–225CrossRef
Metadaten
Titel
Anchored CoCO3 on peeled graphite sheets toward high-capacity lithium-ion battery anode
verfasst von
Guocui Xi
Xun Jiao
Qimeng Peng
Tianbiao Zeng
Publikationsdatum
24.02.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05933-y

Weitere Artikel der Ausgabe 17/2021

Journal of Materials Science 17/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.