Skip to main content
Erschienen in: The Journal of Supercomputing 4/2016

01.04.2016

Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier

verfasst von: H. V. Jayashree, Himanshu Thapliyal, Hamid R. Arabnia, V. K. Agrawal

Erschienen in: The Journal of Supercomputing | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A reversible logic has application in quantum computing. A reversible logic design needs resources such as ancilla and garbage qubits to reconfigure circuit functions or gate functions. The removal of garbage qubits and ancilla qubits are essential in designing an efficient quantum circuit. In the literature, there are multiple designs that have been proposed for a reversible multiplication operation. A multiplication hardware is essential for the circuit design of quantum algorithms, quantum cryptanalysis, and digital signal processing applications. The existing designs of reversible quantum integer multipliers suffer from redundant garbage qubits. In this work, we propose a reversible logic based, garbage-free and ancilla qubit optimized design of a quantum integer multiplier. The proposed quantum integer multiplier utilizes a novel add and rotate methodology that is specially suitable for a reversible computing paradigm. The proposed design methodology is the modified version of a conventional shift and add method. The proposed design of the quantum integer multiplier incorporates add or no operation based on multiplier qubits and followed by a rotate right operation. The proposed design of the quantum integer multiplier produces zero garbage qubits and shows an improvement ranging from 60 to 90 % in ancilla qubits count over the existing work on reversible quantum integer multipliers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Thomsen MK, Glück R, Axelsen HB (2010) Reversible arithmetic logic unit for quantum arithmetic. J Phys A Math Theor 43(38):382002MathSciNetCrossRefMATH Thomsen MK, Glück R, Axelsen HB (2010) Reversible arithmetic logic unit for quantum arithmetic. J Phys A Math Theor 43(38):382002MathSciNetCrossRefMATH
2.
Zurück zum Zitat Margolus N (1990) Parallel quantum computation. Complex Entropy Phys Inf Santa Fe Inst Stud Sci Complex 8:273–287 Margolus N (1990) Parallel quantum computation. Complex Entropy Phys Inf Santa Fe Inst Stud Sci Complex 8:273–287
5.
Zurück zum Zitat Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457CrossRef Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457CrossRef
6.
Zurück zum Zitat Smolin JA, DiVincenzo DP (1996) Five two-bit quantum gates are sufficient to implement the quantum fredkin gate. Phys Rev A 53(4):2855–2856MathSciNetCrossRef Smolin JA, DiVincenzo DP (1996) Five two-bit quantum gates are sufficient to implement the quantum fredkin gate. Phys Rev A 53(4):2855–2856MathSciNetCrossRef
7.
Zurück zum Zitat Draper TG, Kutin SA, Rains EM, Svore KM (2006) A logarithmic-depth quantum carry-lookahead adder. Quantum Inf Comput 6(4):351–369MathSciNetMATH Draper TG, Kutin SA, Rains EM, Svore KM (2006) A logarithmic-depth quantum carry-lookahead adder. Quantum Inf Comput 6(4):351–369MathSciNetMATH
8.
Zurück zum Zitat Takahashi Y, Kunihiro N (2005) A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf Comput 5(6):440–448MathSciNetMATH Takahashi Y, Kunihiro N (2005) A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf Comput 5(6):440–448MathSciNetMATH
9.
Zurück zum Zitat Takahashi Y (2009) Quantum arithmetic circuits: a survey. IEICE Trans Fundam Electron Commun Comput Sci 92(5):1276–1283CrossRef Takahashi Y (2009) Quantum arithmetic circuits: a survey. IEICE Trans Fundam Electron Commun Comput Sci 92(5):1276–1283CrossRef
11.
Zurück zum Zitat Choi B-S, Van Meter R (2011) On the effect of quantum interaction distance on quantum addition circuits. ACM J Emerg Technol Comput Syst (JETC) 7(3):11 Choi B-S, Van Meter R (2011) On the effect of quantum interaction distance on quantum addition circuits. ACM J Emerg Technol Comput Syst (JETC) 7(3):11
12.
Zurück zum Zitat Vedral V, Barenco A, Ekert A (1996) Quantum networks for elementary arithmetic operations. Phys Rev A 54(1):147MathSciNetCrossRef Vedral V, Barenco A, Ekert A (1996) Quantum networks for elementary arithmetic operations. Phys Rev A 54(1):147MathSciNetCrossRef
13.
Zurück zum Zitat Thapliyal H, Ranganathan N (2013) Design of efficient reversible logic-based binary and bcd adder circuits. ACM J Emerg Technol Comput Syst (JETC) 9(3):17 Thapliyal H, Ranganathan N (2013) Design of efficient reversible logic-based binary and bcd adder circuits. ACM J Emerg Technol Comput Syst (JETC) 9(3):17
14.
Zurück zum Zitat Thapliyal H, Jayashree H, Nagamani A, Arabnia HR (2013) Progress in reversible processor design: a novel methodology for reversible carry look-ahead adder. In: Transactions on computational science XVII. Springer, New York, pp 73–97 Thapliyal H, Jayashree H, Nagamani A, Arabnia HR (2013) Progress in reversible processor design: a novel methodology for reversible carry look-ahead adder. In: Transactions on computational science XVII. Springer, New York, pp 73–97
15.
Zurück zum Zitat Thapliyal H, Arabnia H, Vinod AP (2006) Combined integer and floating point multiplication architecture (CIFM) for FPGAs and its reversible logic implementation. In: 49th IEEE international midwest symposium on circuits and systems (MWSCAS’06), vol 2. IEEE, pp 438–442 Thapliyal H, Arabnia H, Vinod AP (2006) Combined integer and floating point multiplication architecture (CIFM) for FPGAs and its reversible logic implementation. In: 49th IEEE international midwest symposium on circuits and systems (MWSCAS’06), vol 2. IEEE, pp 438–442
16.
Zurück zum Zitat Thapliyal H, Arabnia HR, Srinivas M (2006) Reduced area low power high throughput bcd adders for ieee 754r format. arXiv:cs/0609036 Thapliyal H, Arabnia HR, Srinivas M (2006) Reduced area low power high throughput bcd adders for ieee 754r format. arXiv:​cs/​0609036
17.
Zurück zum Zitat Thapliyal H, Arabnia HR (2006) Reversible programmable logic array (RPLA) using Fredkin & Feynman gates for industrial electronics and applications. arXiv:cs/0609029 Thapliyal H, Arabnia HR (2006) Reversible programmable logic array (RPLA) using Fredkin & Feynman gates for industrial electronics and applications. arXiv:​cs/​0609029
18.
Zurück zum Zitat Thapliyal H, Srinivas M, Arabnia HR (2005) Reversible logic synthesis of half, full and parallel subtractors. In: ESA, pp 165–181 Thapliyal H, Srinivas M, Arabnia HR (2005) Reversible logic synthesis of half, full and parallel subtractors. In: ESA, pp 165–181
19.
Zurück zum Zitat Thapliyal H, Srinivas MB, Arabnia HR (2005) A need of quantum computing: reversible logic synthesis of parallel binary adder-subtractor. In: Embedded systems and applications, pp 60–68 Thapliyal H, Srinivas MB, Arabnia HR (2005) A need of quantum computing: reversible logic synthesis of parallel binary adder-subtractor. In: Embedded systems and applications, pp 60–68
20.
Zurück zum Zitat Thapliyal H, Srinivas M, Arabnia HR (2005) A reversible version of \(4 \times 4\) bit array multiplier with minimum gates and garbage outputs. In: Embedded systems and applications, pp 106–116 Thapliyal H, Srinivas M, Arabnia HR (2005) A reversible version of \(4 \times 4\) bit array multiplier with minimum gates and garbage outputs. In: Embedded systems and applications, pp 106–116
21.
Zurück zum Zitat Thapliyal H, Arabnia HR, Srinivas M (2009) Efficient reversible logic design of BCD subtractors. In: Transactions on computational science III. Springer, New York, pp 99–121 Thapliyal H, Arabnia HR, Srinivas M (2009) Efficient reversible logic design of BCD subtractors. In: Transactions on computational science III. Springer, New York, pp 99–121
22.
Zurück zum Zitat Prasad AK, Shende V, Markov I, Hayes J, Patel KN (2006) Data structures and algorithms for simplifying reversible circuits. ACM JETC 2(4):277–293CrossRef Prasad AK, Shende V, Markov I, Hayes J, Patel KN (2006) Data structures and algorithms for simplifying reversible circuits. ACM JETC 2(4):277–293CrossRef
23.
Zurück zum Zitat Golubitsky O, Maslov D (2012) A study of optimal 4-bit reversible toffoli circuits and their synthesis. IEEE Trans Comput 61(9):1341–1353MathSciNetCrossRef Golubitsky O, Maslov D (2012) A study of optimal 4-bit reversible toffoli circuits and their synthesis. IEEE Trans Comput 61(9):1341–1353MathSciNetCrossRef
24.
Zurück zum Zitat Maslov D, Dueck GW (2004) Reversible cascades with minimal garbage. IEEE Trans Comput-Aided Des Integr Circuits Syst 23(11):1497–1509CrossRef Maslov D, Dueck GW (2004) Reversible cascades with minimal garbage. IEEE Trans Comput-Aided Des Integr Circuits Syst 23(11):1497–1509CrossRef
25.
Zurück zum Zitat Yang G, Song X, Hung WN, Perkowski MA (2008) Bi-directional synthesis of 4-bit reversible circuits. Comput J 51(2):207–215CrossRef Yang G, Song X, Hung WN, Perkowski MA (2008) Bi-directional synthesis of 4-bit reversible circuits. Comput J 51(2):207–215CrossRef
26.
Zurück zum Zitat Maslov D, Saeedi M (2011) Reversible circuit optimization via leaving the boolean domain. IEEE Trans Comput-Aided Des Integr Circuits Syst 30(6):806–816CrossRef Maslov D, Saeedi M (2011) Reversible circuit optimization via leaving the boolean domain. IEEE Trans Comput-Aided Des Integr Circuits Syst 30(6):806–816CrossRef
27.
Zurück zum Zitat Maslov D (2015) On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization. arXiv:1508.03273 Maslov D (2015) On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization. arXiv:​1508.​03273
28.
Zurück zum Zitat Saeedi M, Zamani MS, Sedighi M, Sasanian Z (2010) Reversible circuit synthesis using a cycle-based approach. J Emerg Technol Comput Syst 6:13:1–13:26CrossRef Saeedi M, Zamani MS, Sedighi M, Sasanian Z (2010) Reversible circuit synthesis using a cycle-based approach. J Emerg Technol Comput Syst 6:13:1–13:26CrossRef
29.
Zurück zum Zitat Hung WN, Song X, Yang G, Yang J, Perkowski M (2006) Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans Comput-Aided Des 25(9):1652–1663CrossRef Hung WN, Song X, Yang G, Yang J, Perkowski M (2006) Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans Comput-Aided Des 25(9):1652–1663CrossRef
30.
Zurück zum Zitat Zomorodi Moghadam M, Navi K (2012) Ultra-area-efficient reversible multiplier. Microelectron J 43(6):377–385CrossRef Zomorodi Moghadam M, Navi K (2012) Ultra-area-efficient reversible multiplier. Microelectron J 43(6):377–385CrossRef
31.
Zurück zum Zitat Bhagyalakshmi H, Venkatesha M (2012) Optimized multiplier using reversible multi-control input Toffoli gates. Int J VLSI Des Commun Syst 3(6):27–40 Bhagyalakshmi H, Venkatesha M (2012) Optimized multiplier using reversible multi-control input Toffoli gates. Int J VLSI Des Commun Syst 3(6):27–40
32.
Zurück zum Zitat Panchal VK, Nayak VH (2014) Analysis of multiplier circuit using reversible logic. Int J Sci Res Dev 1(6):279–284 Panchal VK, Nayak VH (2014) Analysis of multiplier circuit using reversible logic. Int J Sci Res Dev 1(6):279–284
33.
Zurück zum Zitat Rangaraju H, Suresh AB, Muralidhara K (2013) Design of efficient reversible multiplier. In: Advances in computing and information technology. Springer, New York, pp 571–579 Rangaraju H, Suresh AB, Muralidhara K (2013) Design of efficient reversible multiplier. In: Advances in computing and information technology. Springer, New York, pp 571–579
34.
Zurück zum Zitat Mamataj S, Das B, Chandran S (2015) An approach for designing an optimized reversible parallel multiplier by reversible gates. In: Computational advancement in communication circuits and systems. Springer, New York, pp 345–355 Mamataj S, Das B, Chandran S (2015) An approach for designing an optimized reversible parallel multiplier by reversible gates. In: Computational advancement in communication circuits and systems. Springer, New York, pp 345–355
35.
Zurück zum Zitat Sultana J, Mitra SK, Chowdhury AR (2015) On the analysis of reversible booth’s multiplier. In: 2015 28th international conference on VLSI design (VLSID). IEEE, pp 170–175 Sultana J, Mitra SK, Chowdhury AR (2015) On the analysis of reversible booth’s multiplier. In: 2015 28th international conference on VLSI design (VLSID). IEEE, pp 170–175
37.
Zurück zum Zitat Banerjee A, Das DK (2013) The design of reversible multiplier using ancient indian mathematics. In: 2013 international symposium on electronic system design (ISED). IEEE, pp 31–35 Banerjee A, Das DK (2013) The design of reversible multiplier using ancient indian mathematics. In: 2013 international symposium on electronic system design (ISED). IEEE, pp 31–35
38.
Zurück zum Zitat Kotiyal S, Thapliyal H, Ranganathan N (2015) Reversible logic based multiplication computing unit using binary tree data structure. J Supercomput 71(7):2668–2693 Kotiyal S, Thapliyal H, Ranganathan N (2015) Reversible logic based multiplication computing unit using binary tree data structure. J Supercomput 71(7):2668–2693
39.
Zurück zum Zitat Zhou R, Shi Y, Wang H, Cao J (2011) Transistor realization of reversible ZS series gates and reversible array multiplier. Microelectron J 42(2):305–315CrossRef Zhou R, Shi Y, Wang H, Cao J (2011) Transistor realization of reversible ZS series gates and reversible array multiplier. Microelectron J 42(2):305–315CrossRef
40.
Zurück zum Zitat Portugal R, Figueiredo C (2006) Reversible Karatsubas algorithm. J Univers Comput Sci 12(5):499–511MathSciNet Portugal R, Figueiredo C (2006) Reversible Karatsubas algorithm. J Univers Comput Sci 12(5):499–511MathSciNet
Metadaten
Titel
Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier
verfasst von
H. V. Jayashree
Himanshu Thapliyal
Hamid R. Arabnia
V. K. Agrawal
Publikationsdatum
01.04.2016
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 4/2016
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-016-1676-0

Weitere Artikel der Ausgabe 4/2016

The Journal of Supercomputing 4/2016 Zur Ausgabe