Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Anisotropic Banach spaces defined via cones

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main result of this chapter is a bound on the essential spectral radius of a weighted transfer operator associated with a differentiable diffeomorphism on a hyperbolic basic set and a differentiable weight function. The operator acts on two scales of anisotropic spaces of distributions on the manifold defined using cones (in the cotangent space) adapted to the diffeomorphism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
If \(g\) is \(C^{\alpha}\) for some \(\alpha\in(r-1, r]\), this does not produce stronger results, in contrast to the expanding situation in Chapters 2 and 3.
 
2
We do not assume here that \(\Lambda\) is transitive.
 
3
In [21], the assumption that \(W^{u}\) is smooth could be lifted, by considering the supremum of the Triebel norm over charts which, instead of trivialising the foliation, places it in an unstable cone. However, a bunching condition was required, and the construction was rather heavy.
 
4
The contrived definition of \(\lambda_{x}(T^{m})\) is useful on the extended bundle \(E^{s}(x)\).
 
5
The choice of extensions is not essential.
 
6
Recall that a hyperbolic basic set is transitive by definition.
 
7
\(F\) will correspond to \(T^{m}\) in charts. In Part I, the map \(F\) was an inverse branch of \(T^{m}\) in charts. Cf (4.2) compared to (2.​5).
 
8
Here “spectral” refers to the spectral decomposition of the finite Markov transition matrix appearing when using symbolic dynamics, see [39, 14].
 
9
Recall that we assumed that \(M\) is connected.
 
10
Cone systems were called polarizations in [28, 31].
 
11
We denote the transposed matrix of \(A\) by \(A^{tr}\). We view \(\mathbf{C}_{\omega,\pm}\), \(\mathbf{C}'_{\omega,\pm}\) as locally constant cone fields in the cotangent bundle \(T^{*}\mathbb{R}^{d}\), so that \(F\) acts on these cones via the transpose of \(DF\).
 
12
Cone-hyperbolicity only depends on the data \(\mathbf{C}_{+}\) and \(\mathbf{C}'_{-}\).
 
13
Recall (4.6)–(4.7) and see e.g. [105, Cor 6.4.8]. Injectivity of the extension follows from the Hadamard–Lévy theorem.
 
14
We view \(\mathbf{C}_{\omega ,\pm}\) as locally constant cone fields in the cotangent bundle \(T^{*} \mathbb{R}^{d}\), so that the conditions are expressed with respect to normal subspaces.
 
15
In the original definition of [28, App. A], the multiplication by \((1-\psi_{0})\) had been inadvertently omitted.
 
16
By Lemma 4.21, we can equivalently take the completion of \(C^{r}(\overline{V})\). In addition, the same comment as in the footnote to Definition 2.​11 applies here.
 
17
The extendability condition (4.35) holds, for example, if \(U\) is a small ball and \(F\) is close enough to its derivative on \(U\), using the Hadamard–Lévy theorem to get injectivity.
 
18
In fact, the cone \(\tilde{\mathbf{C}}_{-}\) will not play any role below.
 
19
See Footnote 28 of Chapter 2 for a slightly different argument, following [31, App C].
 
20
Recall the definition of a sub-partition of unity from (2.​37).
 
21
The anisotropic Leibniz inequality Lemma D.10 involves a \(C^{u}\) norm for some \(u>0\), which can be arbitrarily large for a partition of unity.
 
22
This was not allowed for (2.​56), but it is licit here because the intersection multiplicity is bounded since \(T\) is now a diffeomorphism: There is no complexity at the end.
 
23
The piecewise hyperbolic situation in [21] is more delicate, and the corresponding arguments are different there, replacing (4.28) and (4.29) by complexity constants. See Problem 5.​31.
 
24
We may take \(\tilde{g}\) arbitrarily close to \(|g|\).
 
25
Instead of Theorem 2.​9, we used the more sophisticated [50, Thm 9], where \(b\) depends on \(x\) and not only on \(\xi\) in [15].
 
Literatur
1.
9.
Zurück zum Zitat Avila, A., Gouëzel, S., Tsujii, M.: Smoothness of solenoidal attractors. Discrete and continuous dynamical systems. 15, 21–35 (2006) MathSciNetCrossRef Avila, A., Gouëzel, S., Tsujii, M.: Smoothness of solenoidal attractors. Discrete and continuous dynamical systems. 15, 21–35 (2006) MathSciNetCrossRef
10.
Zurück zum Zitat Baillif, M.: Kneading operators, sharp determinants, and weighted Lefschetz zeta functions in higher dimensions. Duke Math. J. 124, 145–175 (2004) MathSciNetCrossRef Baillif, M.: Kneading operators, sharp determinants, and weighted Lefschetz zeta functions in higher dimensions. Duke Math. J. 124, 145–175 (2004) MathSciNetCrossRef
11.
Zurück zum Zitat Baillif, M., Baladi, V.: Kneading determinants and spectra of transfer operators in higher dimensions: the isotropic case. Ergodic Theory Dynam. Systems 25, 1437–1470 (2005) MathSciNetCrossRef Baillif, M., Baladi, V.: Kneading determinants and spectra of transfer operators in higher dimensions: the isotropic case. Ergodic Theory Dynam. Systems 25, 1437–1470 (2005) MathSciNetCrossRef
14.
Zurück zum Zitat Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing, River Edge, NJ (2000) MATH Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing, River Edge, NJ (2000) MATH
15.
Zurück zum Zitat Baladi, V.: Anisotropic Sobolev spaces and dynamical transfer operators: \(C^{\infty}\) foliations. In: Kolyada, S., Manin, Y., Ward, T. (eds.) Algebraic and topological dynamics, pp. 123–135, Contemp. Math., 385, Amer. Math. Soc., Providence, RI (2005) CrossRef Baladi, V.: Anisotropic Sobolev spaces and dynamical transfer operators: \(C^{\infty}\) foliations. In: Kolyada, S., Manin, Y., Ward, T. (eds.) Algebraic and topological dynamics, pp. 123–135, Contemp. Math., 385, Amer. Math. Soc., Providence, RI (2005) CrossRef
17.
Zurück zum Zitat Baladi, V.: The quest for the ultimate anisotropic Banach space. J. Stat. Phys. Special Volume for D. Ruelle and Ya. Sinai 166, 525–557 (2017) MathSciNetMATH Baladi, V.: The quest for the ultimate anisotropic Banach space. J. Stat. Phys. Special Volume for D. Ruelle and Ya. Sinai 166, 525–557 (2017) MathSciNetMATH
18.
Zurück zum Zitat Baladi, V.: Characteristic functions as bounded multipliers on anisotropic spaces. Preprint arXiv:1704.00157, to appear Proc. Amer. Math. Soc. Baladi, V.: Characteristic functions as bounded multipliers on anisotropic spaces. Preprint arXiv:​1704.​00157, to appear Proc. Amer. Math. Soc.
19.
Zurück zum Zitat Baladi, V., Demers, M., Liverani, C.: Exponential decay of correlations for finite horizon Sinai billiard flows. Invent. Math. 211, 39–177 (2018) MathSciNetCrossRef Baladi, V., Demers, M., Liverani, C.: Exponential decay of correlations for finite horizon Sinai billiard flows. Invent. Math. 211, 39–177 (2018) MathSciNetCrossRef
20.
Zurück zum Zitat Baladi, V., Gouëzel, S.: Good Banach spaces for piecewise hyperbolic maps via interpolation. Annales de l’Institut Henri Poincaré/Analyse non linéaire 26, 1453–1481 (2009) MathSciNetCrossRef Baladi, V., Gouëzel, S.: Good Banach spaces for piecewise hyperbolic maps via interpolation. Annales de l’Institut Henri Poincaré/Analyse non linéaire 26, 1453–1481 (2009) MathSciNetCrossRef
21.
Zurück zum Zitat Baladi, V., Gouëzel, S.: Banach spaces for piecewise cone hyperbolic maps. J. Modern Dynam. 4, 91–135 (2010) MathSciNetMATH Baladi, V., Gouëzel, S.: Banach spaces for piecewise cone hyperbolic maps. J. Modern Dynam. 4, 91–135 (2010) MathSciNetMATH
23.
Zurück zum Zitat Baladi, V., Kitaev, A., Ruelle, D., Semmes, S.: Sharp determinants and kneading operators for holomorphic maps. Tr. Mat. Inst. Steklova 216, Din. Sist. i Smezhnye Vopr., 193–235 (1997); translation in Proc. Steklov Inst. Math. 216, 186–228 (1997) Baladi, V., Kitaev, A., Ruelle, D., Semmes, S.: Sharp determinants and kneading operators for holomorphic maps. Tr. Mat. Inst. Steklova 216, Din. Sist. i Smezhnye Vopr., 193–235 (1997); translation in Proc. Steklov Inst. Math. 216, 186–228 (1997)
25.
Zurück zum Zitat Baladi, V., Liverani, C.: Exponential decay of correlations for piecewise contact hyperbolic flows. Comm. Math. Phys. 314, 689–773 (2012) MathSciNetCrossRef Baladi, V., Liverani, C.: Exponential decay of correlations for piecewise contact hyperbolic flows. Comm. Math. Phys. 314, 689–773 (2012) MathSciNetCrossRef
28.
Zurück zum Zitat Baladi, V., Tsujii, M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier 57, 127–154 (2007) MathSciNetCrossRef Baladi, V., Tsujii, M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier 57, 127–154 (2007) MathSciNetCrossRef
29.
Zurück zum Zitat Baladi, V., Tsujii, M.: Spectra of differentiable hyperbolic maps. In: Albeverio, S., Marcolli, M., Paycha, S., Plazas, J. (eds.) Traces in number theory, geometry and quantum fields, pp. 1–21, Aspects Math., E38, Friedr. Vieweg, Wiesbaden (2008) Baladi, V., Tsujii, M.: Spectra of differentiable hyperbolic maps. In: Albeverio, S., Marcolli, M., Paycha, S., Plazas, J. (eds.) Traces in number theory, geometry and quantum fields, pp. 1–21, Aspects Math., E38, Friedr. Vieweg, Wiesbaden (2008)
31.
Zurück zum Zitat Baladi, V., Tsujii, M.: Dynamical determinants and spectrum for hyperbolic diffeomorphisms. In: Burns, K., Dolgopyat, D., Pesin, Ya. (eds.) Probabilistic and Geometric Structures in Dynamics, pp. 29–68, Contemp. Math., 469, Amer. Math. Soc., Providence, RI (2008) CrossRef Baladi, V., Tsujii, M.: Dynamical determinants and spectrum for hyperbolic diffeomorphisms. In: Burns, K., Dolgopyat, D., Pesin, Ya. (eds.) Probabilistic and Geometric Structures in Dynamics, pp. 29–68, Contemp. Math., 469, Amer. Math. Soc., Providence, RI (2008) CrossRef
37.
Zurück zum Zitat Blank, M., Keller, G., Liverani, C.: Ruelle-Perron-Frobenius spectrum for Anosov maps. Nonlinearity 15, 1905–1973 (2002) MathSciNetCrossRef Blank, M., Keller, G., Liverani, C.: Ruelle-Perron-Frobenius spectrum for Anosov maps. Nonlinearity 15, 1905–1973 (2002) MathSciNetCrossRef
39.
Zurück zum Zitat Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Second revised edition. With a preface by D. Ruelle. Edited by J.-R. Chazottes. Lecture Notes in Math. 470, Springer-Verlag, Berlin (2008) CrossRef Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Second revised edition. With a preface by D. Ruelle. Edited by J.-R. Chazottes. Lecture Notes in Math. 470, Springer-Verlag, Berlin (2008) CrossRef
41.
Zurück zum Zitat Brin, M., Stuck, G.: Introduction to dynamical systems. Cambridge University Press, Cambridge (2002) CrossRef Brin, M., Stuck, G.: Introduction to dynamical systems. Cambridge University Press, Cambridge (2002) CrossRef
50.
Zurück zum Zitat Coifman, R. R., Meyer, Y.: Au delà des opérateurs pseudo-différentiels. Astérisque No. 57. Soc. Math. France, Paris (1978) MATH Coifman, R. R., Meyer, Y.: Au delà des opérateurs pseudo-différentiels. Astérisque No. 57. Soc. Math. France, Paris (1978) MATH
59.
Zurück zum Zitat Demers, M. F., Liverani, C.: Stability of statistical properties in two-dimensional piecewise hyperbolic maps. Trans. Amer. Math. Soc. 360, 4777–4814 (2008) MathSciNetCrossRef Demers, M. F., Liverani, C.: Stability of statistical properties in two-dimensional piecewise hyperbolic maps. Trans. Amer. Math. Soc. 360, 4777–4814 (2008) MathSciNetCrossRef
60.
Zurück zum Zitat Demers, M.F., Zhang, H.-K.: Spectral analysis for the transfer operator for the Lorentz gas. J. Modern Dynamics 5, 665–709 (2011) MathSciNetCrossRef Demers, M.F., Zhang, H.-K.: Spectral analysis for the transfer operator for the Lorentz gas. J. Modern Dynamics 5, 665–709 (2011) MathSciNetCrossRef
67.
Zurück zum Zitat Faure, F., Roy, N.: Ruelle–Pollicott resonances for real analytic hyperbolic maps. Nonlinearity 19, 1233–1252 (2006) MathSciNetCrossRef Faure, F., Roy, N.: Ruelle–Pollicott resonances for real analytic hyperbolic maps. Nonlinearity 19, 1233–1252 (2006) MathSciNetCrossRef
68.
Zurück zum Zitat Faure, F., Roy, N., Sjöstrand, J.: Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances. Open Math. J. 1, 35–81 (2008) MathSciNetCrossRef Faure, F., Roy, N., Sjöstrand, J.: Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances. Open Math. J. 1, 35–81 (2008) MathSciNetCrossRef
69.
Zurück zum Zitat Faure, F., Sjöstrand, J.: Upper bound on the density of Ruelle resonances for Anosov flows. Comm. Math. Phys. 308, 325–364 (2011) MathSciNetCrossRef Faure, F., Sjöstrand, J.: Upper bound on the density of Ruelle resonances for Anosov flows. Comm. Math. Phys. 308, 325–364 (2011) MathSciNetCrossRef
74.
83.
Zurück zum Zitat Gouëzel, S.: Multiplication par la fonction caractéristique d’un demi-plan pour différents espaces de Banach. Personal communication (January 2007) Gouëzel, S.: Multiplication par la fonction caractéristique d’un demi-plan pour différents espaces de Banach. Personal communication (January 2007)
87.
Zurück zum Zitat Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dynam. Systems 26, 189–217 (2006) MathSciNetCrossRef Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dynam. Systems 26, 189–217 (2006) MathSciNetCrossRef
88.
Zurück zum Zitat Gouëzel, S., Liverani, C.: Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. J. Differential Geom., 79, 433–477 (2008) MathSciNetCrossRef Gouëzel, S., Liverani, C.: Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. J. Differential Geom., 79, 433–477 (2008) MathSciNetCrossRef
92.
Zurück zum Zitat Hasselblatt, B., Wilkinson, A.: Prevalence of non-Lipschitz Anosov foliations. Ergodic Theory Dynam. Systems 19, 643–656 (1999) MathSciNetCrossRef Hasselblatt, B., Wilkinson, A.: Prevalence of non-Lipschitz Anosov foliations. Ergodic Theory Dynam. Systems 19, 643–656 (1999) MathSciNetCrossRef
105.
Zurück zum Zitat Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995) CrossRef Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995) CrossRef
112.
Zurück zum Zitat Kitaev, A.Yu.: Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness. Nonlinearity 12, 141–179 (1999). Corrigendum: “Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness”. Nonlinearity 12, 1717–1719 (1999) MathSciNetCrossRef Kitaev, A.Yu.: Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness. Nonlinearity 12, 141–179 (1999). Corrigendum: “Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness”. Nonlinearity 12, 1717–1719 (1999) MathSciNetCrossRef
131.
Zurück zum Zitat Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque No. 187–188. Soc. Math. France, Paris (1990) MATH Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque No. 187–188. Soc. Math. France, Paris (1990) MATH
150.
151.
Zurück zum Zitat Rugh, H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. Ergodic Theory Dynam. Systems 16, 805–819 (1996) MathSciNetCrossRef Rugh, H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. Ergodic Theory Dynam. Systems 16, 805–819 (1996) MathSciNetCrossRef
154.
Zurück zum Zitat Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. Walter de Gruyter & Co., Berlin (1996) CrossRef Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. Walter de Gruyter & Co., Berlin (1996) CrossRef
158.
Zurück zum Zitat Shubin, M.A.: Pseudodifferential operators and spectral theory. Second edition. Springer-Verlag, Berlin (2001) CrossRef Shubin, M.A.: Pseudodifferential operators and spectral theory. Second edition. Springer-Verlag, Berlin (2001) CrossRef
161.
Zurück zum Zitat Slipantschuk, J., Bandtlow, O.F., Just, W.: Complete spectral data for analytic Anosov maps of the torus. Nonlinearity 30, 2667–2686 (2017) MathSciNetCrossRef Slipantschuk, J., Bandtlow, O.F., Just, W.: Complete spectral data for analytic Anosov maps of the torus. Nonlinearity 30, 2667–2686 (2017) MathSciNetCrossRef
162.
Zurück zum Zitat Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970) MATH Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970) MATH
168.
Zurück zum Zitat Triebel, H.: General function spaces III (spaces \(B^{g(x)}_{p,q}\) and \(F^{g(x)}_{p,q}\), \(1< p < \infty\): basic properties). Analysis Math. 3, 221–249 (1977) MathSciNetCrossRef Triebel, H.: General function spaces III (spaces \(B^{g(x)}_{p,q}\) and \(F^{g(x)}_{p,q}\), \(1< p < \infty\): basic properties). Analysis Math. 3, 221–249 (1977) MathSciNetCrossRef
169.
Zurück zum Zitat Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam (1978) MATH Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam (1978) MATH
170.
Zurück zum Zitat Triebel, H.: Theory of function spaces II. Birkhäuser, Basel (1992) CrossRef Triebel, H.: Theory of function spaces II. Birkhäuser, Basel (1992) CrossRef
Metadaten
Titel
Anisotropic Banach spaces defined via cones
verfasst von
Viviane Baladi
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-77661-3_4