Skip to main content

2013 | OriginalPaper | Buchkapitel

2. Anisotropic Elastic Solids

verfasst von : George J. Dvorak

Erschienen in: Micromechanics of Composite Materials

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Properties of composite materials and their constituents often depend on both position and direction in a fixed system of coordinates. In the terminology of solid mechanics, such materials are heterogeneous and anisotropic. This chapter is concerned with the directional dependence, defined by certain material symmetry elements, and reflected in eight distinct forms of the stiffness and compliance matrices of elastic solids. Such materials include, for example, reinforcing fibers, particles and their coatings, or fibrous composites and laminates represented on the macroscale by homogenized solids with equivalent or effective elastic moduli. Identification of the positions of zero-valued coefficients, and of any connections between nonzero coefficients in those matrices is of particular interest. Different classes of crystals exhibit a much larger range of symmetries, derived from spatial arrangement of their lattices. Broader expositions of these topics can be found in several books, such as Love (1944), Lekhnitskii (1950), Green and Atkins (1960), Nye (1957, 1985), Hearmon (1961), Ting (1996), and Cowin and Doty (2007).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmad, F. (2002). Invariants and structural invariants of the anisotropic elasticity tensor. Quarterly Journal of Mechanics and Applied Mathematics, 55, 597–606.MathSciNetCrossRefMATH Ahmad, F. (2002). Invariants and structural invariants of the anisotropic elasticity tensor. Quarterly Journal of Mechanics and Applied Mathematics, 55, 597–606.MathSciNetCrossRefMATH
Zurück zum Zitat Almgren, R. F. (1985). An isotropic three-dimensional structure with Poisson’s ratio = −1. Journal of Elasticity, 15, 427–430.CrossRef Almgren, R. F. (1985). An isotropic three-dimensional structure with Poisson’s ratio = −1. Journal of Elasticity, 15, 427–430.CrossRef
Zurück zum Zitat Backus, G. A. (1970). Geometrical picture of anisotropic elastic tensors. Reviews of Geophysics and Spacephysics, 8, 633–671.CrossRef Backus, G. A. (1970). Geometrical picture of anisotropic elastic tensors. Reviews of Geophysics and Spacephysics, 8, 633–671.CrossRef
Zurück zum Zitat Baerheim, R. (1993). Harmonic decomposition of the anisotropic elasticity tensor. Quarterly Journal of Mechanics and Applied Mathematics, 46, 511–523.MathSciNetCrossRef Baerheim, R. (1993). Harmonic decomposition of the anisotropic elasticity tensor. Quarterly Journal of Mechanics and Applied Mathematics, 46, 511–523.MathSciNetCrossRef
Zurück zum Zitat Baughman, R. H., Shacklette, J. M., Zakhidov, A. A., & Stafstrom, S. (1998). Negative Poisson’s ratio as a common feature of cubic materials. Nature, 426, 667. Baughman, R. H., Shacklette, J. M., Zakhidov, A. A., & Stafstrom, S. (1998). Negative Poisson’s ratio as a common feature of cubic materials. Nature, 426, 667.
Zurück zum Zitat Boulanger, P., & Hayes, M. (1998). Poisson’s ratio for orthotropic materials. Journal of Elasticity, 50, 87–89.CrossRefMATH Boulanger, P., & Hayes, M. (1998). Poisson’s ratio for orthotropic materials. Journal of Elasticity, 50, 87–89.CrossRefMATH
Zurück zum Zitat Budiansky, B., & Kimmel, E. (1987). Elastic moduli of lungs. ASME Journal of Applied Mechanics, 54, 351–358.CrossRefMATH Budiansky, B., & Kimmel, E. (1987). Elastic moduli of lungs. ASME Journal of Applied Mechanics, 54, 351–358.CrossRefMATH
Zurück zum Zitat Chadwick, P., Vianello, M., & Cowin, S. C. (2001). A new proof that the number of linear elastic symmetries is eight. Journal of the Mechanics and Physics of Solids, 49, 2471–2492.MathSciNetCrossRefMATH Chadwick, P., Vianello, M., & Cowin, S. C. (2001). A new proof that the number of linear elastic symmetries is eight. Journal of the Mechanics and Physics of Solids, 49, 2471–2492.MathSciNetCrossRefMATH
Zurück zum Zitat Christensen, R. M. (1987). Sufficient symmetry conditions for isotropy of the elastic moduli tensor. Journal of Applied Mechanics, 54, 772–777.CrossRef Christensen, R. M. (1987). Sufficient symmetry conditions for isotropy of the elastic moduli tensor. Journal of Applied Mechanics, 54, 772–777.CrossRef
Zurück zum Zitat Cowin, S. C., & Mehrabadi, M. M. (1987). On the identification of material symmetry for anisotropic materials. Quarterly Journal of Mechanics and Applied Mathematics, 40, 451–476.MathSciNetCrossRefMATH Cowin, S. C., & Mehrabadi, M. M. (1987). On the identification of material symmetry for anisotropic materials. Quarterly Journal of Mechanics and Applied Mathematics, 40, 451–476.MathSciNetCrossRefMATH
Zurück zum Zitat Cowin, S. C., & Mehrabadi, M. M. (1989). Identification of the elastic symmetry of bone and other materials. Journal of Biomechanics, 22, 503–515.CrossRef Cowin, S. C., & Mehrabadi, M. M. (1989). Identification of the elastic symmetry of bone and other materials. Journal of Biomechanics, 22, 503–515.CrossRef
Zurück zum Zitat Cowin, S. C., & Mehrabadi, M. M. (1995). Anisotropic symmetries of linear elasticity. Applied Mechanics Reviews, 48, 247–285.CrossRef Cowin, S. C., & Mehrabadi, M. M. (1995). Anisotropic symmetries of linear elasticity. Applied Mechanics Reviews, 48, 247–285.CrossRef
Zurück zum Zitat Daniel, I. M., & Ishai, O. (2006). Engineering mechanics of composite materials (2nd ed.). New York: Oxford University Press. Daniel, I. M., & Ishai, O. (2006). Engineering mechanics of composite materials (2nd ed.). New York: Oxford University Press.
Zurück zum Zitat Evans, K. E. (1991). Auxetic polymers: A new range of materials. Endeavour, New Series, 15, 170–174.CrossRef Evans, K. E. (1991). Auxetic polymers: A new range of materials. Endeavour, New Series, 15, 170–174.CrossRef
Zurück zum Zitat Evans, K. E., Nkansah, M. A., Hutchinson, I. J., & Rogers, S. C. (1991). Molecular network design. Nature, 353, 124.CrossRef Evans, K. E., Nkansah, M. A., Hutchinson, I. J., & Rogers, S. C. (1991). Molecular network design. Nature, 353, 124.CrossRef
Zurück zum Zitat Green, A. E., & Atkins, J. E. (1960). Large elastic deformations and non-linear continuum mechanics. Oxford: Clarendon Press, pp. 11, 14, 15. Green, A. E., & Atkins, J. E. (1960). Large elastic deformations and non-linear continuum mechanics. Oxford: Clarendon Press, pp. 11, 14, 15.
Zurück zum Zitat Guo, C. Y., & Wheeler, L. (2006). Extreme Poisson’s ratios and related elastic crystal properties. Journal of the Mechanics and Physics of Solids, 54, 690–707.MathSciNetCrossRefMATH Guo, C. Y., & Wheeler, L. (2006). Extreme Poisson’s ratios and related elastic crystal properties. Journal of the Mechanics and Physics of Solids, 54, 690–707.MathSciNetCrossRefMATH
Zurück zum Zitat Hayes, M., & Shuvalov, A. (1998). On the extreme values of Young’s modulus, the shear modulus, and Poisson’s ratio for cubic materials. Journal of Applied Mechanics, 65, 786–787.MathSciNetCrossRef Hayes, M., & Shuvalov, A. (1998). On the extreme values of Young’s modulus, the shear modulus, and Poisson’s ratio for cubic materials. Journal of Applied Mechanics, 65, 786–787.MathSciNetCrossRef
Zurück zum Zitat Hearmon, R. F. S. (1961). Introduction to applied anisotropic elasticity. Oxford: Clarendon Press. Hearmon, R. F. S. (1961). Introduction to applied anisotropic elasticity. Oxford: Clarendon Press.
Zurück zum Zitat Herakovich, C. T. (1998). Mechanics of fibrous composites. New York: Wiley. Herakovich, C. T. (1998). Mechanics of fibrous composites. New York: Wiley.
Zurück zum Zitat Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society London, A193, 281–297.CrossRef Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society London, A193, 281–297.CrossRef
Zurück zum Zitat Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.MathSciNetCrossRef Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.MathSciNetCrossRef
Zurück zum Zitat Hill, R. (1965a). Continuum micromechanics of elastic-plastic polycrystals. Journal of the Mechanics and Physics of Solids, 13, 89–101.CrossRefMATH Hill, R. (1965a). Continuum micromechanics of elastic-plastic polycrystals. Journal of the Mechanics and Physics of Solids, 13, 89–101.CrossRefMATH
Zurück zum Zitat Kröner, E. (1958). Berechnung der elastischen Konstanten der Vielkristalls aus den Konstanten der Einkristalls. Zeitschrift für Physik, 151, 504–518.CrossRef Kröner, E. (1958). Berechnung der elastischen Konstanten der Vielkristalls aus den Konstanten der Einkristalls. Zeitschrift für Physik, 151, 504–518.CrossRef
Zurück zum Zitat Lakes, R. (1987). Foam structures with a negative Poisson’s ratio. Science, 235, 1038–1040.CrossRef Lakes, R. (1987). Foam structures with a negative Poisson’s ratio. Science, 235, 1038–1040.CrossRef
Zurück zum Zitat Lakes, R. (1993). Advances in negative Poisson’s ratio materials. Advanced Materials, 5, 293–296.CrossRef Lakes, R. (1993). Advances in negative Poisson’s ratio materials. Advanced Materials, 5, 293–296.CrossRef
Zurück zum Zitat Lakes, R. (2000). Deformations in extreme matter. Science, 288, 1976–1977.CrossRef Lakes, R. (2000). Deformations in extreme matter. Science, 288, 1976–1977.CrossRef
Zurück zum Zitat Lekhnitskii, S. G. (1950). Theory of elasticity of an anisotropic body, Gostekhizdat Moscow (English translation published by Holden-Day, San Francisco, 1963). Lekhnitskii, S. G. (1950). Theory of elasticity of an anisotropic body, Gostekhizdat Moscow (English translation published by Holden-Day, San Francisco, 1963).
Zurück zum Zitat Li, Y. (1976). The anisotropic behavior of Poisson’s ratio, Young’s modulus, and shear modulus in hexagonal materials. Physica Status Solidi, 38, 171–175.CrossRef Li, Y. (1976). The anisotropic behavior of Poisson’s ratio, Young’s modulus, and shear modulus in hexagonal materials. Physica Status Solidi, 38, 171–175.CrossRef
Zurück zum Zitat Love, A. E. H. (1944). A treatise on the mathematical theory of elasticity (4th ed.). New York: Dover.MATH Love, A. E. H. (1944). A treatise on the mathematical theory of elasticity (4th ed.). New York: Dover.MATH
Zurück zum Zitat Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1967). A continuum model for fibre-reinforced plastic materials. Proceedings of the Royal Society London, A301, 473–492.CrossRef Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1967). A continuum model for fibre-reinforced plastic materials. Proceedings of the Royal Society London, A301, 473–492.CrossRef
Zurück zum Zitat Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1969). A continuum theory of a plastic-elastic fibre-reinforced material. International Journal of Engineering Science, 7, 129–152.CrossRefMATH Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1969). A continuum theory of a plastic-elastic fibre-reinforced material. International Journal of Engineering Science, 7, 129–152.CrossRefMATH
Zurück zum Zitat Nye, J. F. (1957, 1985). Physical properties of crystals. Their representation by tensors and matrices. Oxford: Oxford University Press. Nye, J. F. (1957, 1985). Physical properties of crystals. Their representation by tensors and matrices. Oxford: Oxford University Press.
Zurück zum Zitat Sirotin, Y. I., & Shakol’skaya, M. P. (1982). Fundamentals of crystal physics. Moscow: MIR Publishers. Sirotin, Y. I., & Shakol’skaya, M. P. (1982). Fundamentals of crystal physics. Moscow: MIR Publishers.
Zurück zum Zitat Smith, G. F., & Rivlin, R. (1958). The strain-energy function for anisotropic elastic materials. Transactions of the American Mathematical Society, 88, 175–193.MathSciNetCrossRefMATH Smith, G. F., & Rivlin, R. (1958). The strain-energy function for anisotropic elastic materials. Transactions of the American Mathematical Society, 88, 175–193.MathSciNetCrossRefMATH
Zurück zum Zitat Spencer, A. J. M. (1972). Deformation of fibre-reinforced materials. London: Oxford University Press. Spencer, A. J. M. (1972). Deformation of fibre-reinforced materials. London: Oxford University Press.
Zurück zum Zitat Srinivasan, T. P., & Nigam, S. D. (1969). Invariant elastic constants for crystals. Journal of Mathematics and Mechanics, 19, 411–420. Srinivasan, T. P., & Nigam, S. D. (1969). Invariant elastic constants for crystals. Journal of Mathematics and Mechanics, 19, 411–420.
Zurück zum Zitat Ting, T. C. T. (1987). Invariants of anisotropic elastic constants. Quarterly Journal of Mechanics and Applied Mathematics, 40, 431–438.MathSciNetCrossRefMATH Ting, T. C. T. (1987). Invariants of anisotropic elastic constants. Quarterly Journal of Mechanics and Applied Mathematics, 40, 431–438.MathSciNetCrossRefMATH
Zurück zum Zitat Ting, T. C. T. (1996). Anisotropic elasticity: Theory and applications. Oxford: Oxford University Press.MATH Ting, T. C. T. (1996). Anisotropic elasticity: Theory and applications. Oxford: Oxford University Press.MATH
Zurück zum Zitat Ting, T. C. T. (2003). Generalization of Cowin-Mehrabadi theorems and direct proof that the number of linear elastic symmetries is eight. International Journal of Solids and Structures, 40, 7129–7142.MathSciNetCrossRefMATH Ting, T. C. T. (2003). Generalization of Cowin-Mehrabadi theorems and direct proof that the number of linear elastic symmetries is eight. International Journal of Solids and Structures, 40, 7129–7142.MathSciNetCrossRefMATH
Zurück zum Zitat Ting, T. C. T. (2004). Very large Poisson’s ratio with a bounded transverse strain in anisotropic elastic materials. Journal of Elasticity, 77, 163–176.MathSciNetCrossRefMATH Ting, T. C. T. (2004). Very large Poisson’s ratio with a bounded transverse strain in anisotropic elastic materials. Journal of Elasticity, 77, 163–176.MathSciNetCrossRefMATH
Zurück zum Zitat Ting, T. C. T. (2005a). The stationary values of Young’s modulus for monoclinic and triclinic materials. Journal of Mechanics, 21, 249–253.CrossRef Ting, T. C. T. (2005a). The stationary values of Young’s modulus for monoclinic and triclinic materials. Journal of Mechanics, 21, 249–253.CrossRef
Zurück zum Zitat Ting, T. C. T. (2005b). Explicit expression of the stationary values of Young’s modulus and the shear modulus for anistropic elastic materials. Journal of Mechanics, 21, 255–266.CrossRef Ting, T. C. T. (2005b). Explicit expression of the stationary values of Young’s modulus and the shear modulus for anistropic elastic materials. Journal of Mechanics, 21, 255–266.CrossRef
Zurück zum Zitat Ting, T. C. T., & Barnett, D. M. (2005). Negative Poisson’s ratios in anisotropic linear elastic media. ASME Journal of Applied Mechanics, 72, 929–931.MathSciNetCrossRefMATH Ting, T. C. T., & Barnett, D. M. (2005). Negative Poisson’s ratios in anisotropic linear elastic media. ASME Journal of Applied Mechanics, 72, 929–931.MathSciNetCrossRefMATH
Zurück zum Zitat Ting, T. C. T., & Chen, T. (2005). Poisson’s ratio for anisotropic elastic materials can have no bounds. Quarterly Journal of Mechanics and Applied Mathematics, 58, 73–82.MathSciNetCrossRefMATH Ting, T. C. T., & Chen, T. (2005). Poisson’s ratio for anisotropic elastic materials can have no bounds. Quarterly Journal of Mechanics and Applied Mathematics, 58, 73–82.MathSciNetCrossRefMATH
Zurück zum Zitat Ting, T. C. T., & He, Q. C. (2006). Decomposition of elasticity tensors and tensors that are structurally invariant in three dimensions. Quarterly Journal of Mechanics and Applied Mathematics, 59, 323–341.MathSciNetCrossRefMATH Ting, T. C. T., & He, Q. C. (2006). Decomposition of elasticity tensors and tensors that are structurally invariant in three dimensions. Quarterly Journal of Mechanics and Applied Mathematics, 59, 323–341.MathSciNetCrossRefMATH
Zurück zum Zitat Tsai, S. W., & Wu, E. M. (1971). A general theory of strength for anisotropic materials. Journal of Composite Materials, 5, 58–80.CrossRef Tsai, S. W., & Wu, E. M. (1971). A general theory of strength for anisotropic materials. Journal of Composite Materials, 5, 58–80.CrossRef
Zurück zum Zitat Turley, J., & Sines, G. (1971). The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. Journal of Physics, 4, 264–271. Turley, J., & Sines, G. (1971). The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. Journal of Physics, 4, 264–271.
Zurück zum Zitat Voigt, W. (1910). Lehrbuch der Kristallphysik. Leipzig: B. G. Teubner. Voigt, W. (1910). Lehrbuch der Kristallphysik. Leipzig: B. G. Teubner.
Zurück zum Zitat Walpole, L. J. (1969). On the overall elastic moduli of composite materials. Journal of the Mechanics and Physics of Solids, 17, 235–251.CrossRefMATH Walpole, L. J. (1969). On the overall elastic moduli of composite materials. Journal of the Mechanics and Physics of Solids, 17, 235–251.CrossRefMATH
Zurück zum Zitat Walpole, L. J. (1981). Elastic behavior of composite materials: Theoretical foundations. In Advances in applied mechanics. New York: Academic, 21, 169–242. Walpole, L. J. (1981). Elastic behavior of composite materials: Theoretical foundations. In Advances in applied mechanics. New York: Academic, 21, 169–242.
Zurück zum Zitat Walpole, L. J. (1984). Fourth-rank tensors of the thirty-two crystal classes; multiplication tables. Proceedings of the Royal Society London A, 391, 149–179.MathSciNetCrossRefMATH Walpole, L. J. (1984). Fourth-rank tensors of the thirty-two crystal classes; multiplication tables. Proceedings of the Royal Society London A, 391, 149–179.MathSciNetCrossRefMATH
Zurück zum Zitat Walpole, L. J. (1985a). The stress-strain law of a textured aggregate of cubic crystals. Journal of the Mechanics and Physics of Solids, 33, 363–370.CrossRefMATH Walpole, L. J. (1985a). The stress-strain law of a textured aggregate of cubic crystals. Journal of the Mechanics and Physics of Solids, 33, 363–370.CrossRefMATH
Zurück zum Zitat Zener, C. (1948). Elasticity and anelasticity of metals. Chicago: University of Chicago Press. Zener, C. (1948). Elasticity and anelasticity of metals. Chicago: University of Chicago Press.
Zurück zum Zitat Zheng, Q. S., & Chen, T. (2001). New perspective on Poisson’s ratios of elastic solids. Acta Mechanica, 150, 191–195.CrossRefMATH Zheng, Q. S., & Chen, T. (2001). New perspective on Poisson’s ratios of elastic solids. Acta Mechanica, 150, 191–195.CrossRefMATH
Metadaten
Titel
Anisotropic Elastic Solids
verfasst von
George J. Dvorak
Copyright-Jahr
2013
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-4101-0_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.