Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.03.2015 | Ausgabe 4/2015

Water Resources Management 4/2015

ANN Based Sediment Prediction Model Utilizing Different Input Scenarios

Zeitschrift:
Water Resources Management > Ausgabe 4/2015
Autoren:
Haitham Abdulmohsin Afan, Ahmed El-Shafie, Zaher Mundher Yaseen, Mohammed Majeed Hameed, Wan Hanna Melini Wan Mohtar, Aini Hussain

Abstract

Modeling sediment load is a significant factor in water resources engineering as it affects directly the design and management of water resources. In this study, artificial neural networks (ANNs) are employed to estimate the daily sediment load. Two different ANN algorithms, the feed forward neural network (FFNN) and radial basis function (RBF) have been used for this purpose. The neural networks are trained and tested using daily sediment and flow data from Rantau Panjang station on Johor River. The results show that combining flow data with sediment load data gives an accurate model to predict sediment load. The comparison of the results indicate that the FFNN model has superior performance than the RB model in estimating daily sediment load.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2015

Water Resources Management 4/2015 Zur Ausgabe