2021 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Supervised classification is becoming a useful tool in condition monitoring. For example, from a set of measured features (temperature, vibration, etc.), we might be interested in predicting machine failures. Given some costs of class misclassifications and a set of labeled learning samples, this task aims to fit a decision rule by minimizing the empirical risk of misclassifications. However, learning a classifier when the class proportions of the training set are uncertain, and might differ from the unknown state of nature, may increase the misclassification risk when classifying some test samples. This drawback can also occur when dealing with imbalanced datasets, which is common in condition monitoring. To make a decision rule robust with respect to the class proportions, a solution is to learn a decision rule which minimizes the maximum class-conditional risk. Such a decision rule is called a minimax classifier. This paper studies the minimax classifier for classifying discrete or discretized features between several classes. Our algorithm is applied to a real condition monitoring database.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Yang Y, Webb GI (Jan 2009) Discretization for naive-bayes learning: managing discretization bias and variance. Mach Learn 74(1):39–74 Yang Y, Webb GI (Jan 2009) Discretization for naive-bayes learning: managing discretization bias and variance. Mach Learn 74(1):39–74
2.
Zurück zum Zitat Poor HV (1994) An introduction to signal detection and estimation, 2nd edn. Springer, Berlin Poor HV (1994) An introduction to signal detection and estimation, 2nd edn. Springer, Berlin
3.
Zurück zum Zitat Ávila Pires B, Szepesvari C, Ghavamzadeh M (2013) Cost-sensitive multiclass classification risk bounds. In: Proceedings of the 30th international conference on machine learning, vol 28 Ávila Pires B, Szepesvari C, Ghavamzadeh M (2013) Cost-sensitive multiclass classification risk bounds. In: Proceedings of the 30th international conference on machine learning, vol 28
4.
Zurück zum Zitat Drummond C, Holte RC (2003) C4.5, class imbalance, and cost sensitivity: Why under-sampling beats oversampling. In: Proceedings of the ICML’03 workshop on learning from imbalanced datasets Drummond C, Holte RC (2003) C4.5, class imbalance, and cost sensitivity: Why under-sampling beats oversampling. In: Proceedings of the ICML’03 workshop on learning from imbalanced datasets
5.
Zurück zum Zitat Guerrero-Curieses A, Alaiz-Rodriguez R, Cid-Sueiro J (2004) A fixed-point algorithm to minimax learning with neural networks. IEEE Trans Syst Man Cybernetics Part C Appl Rev 34(4):383–392 CrossRef Guerrero-Curieses A, Alaiz-Rodriguez R, Cid-Sueiro J (2004) A fixed-point algorithm to minimax learning with neural networks. IEEE Trans Syst Man Cybernetics Part C Appl Rev 34(4):383–392
CrossRef
6.
Zurück zum Zitat AB SC (2016) APS failure at Scania trucks data set. UCI machine learning repository (Online). Available: https://www.kaggle.com/uciml/aps-failure-at-scania-trucks-data-set AB SC (2016) APS failure at Scania trucks data set. UCI machine learning repository (Online). Available:
https://www.kaggle.com/uciml/aps-failure-at-scania-trucks-data-set
7.
Zurück zum Zitat Gilet C, Barbosa S, Fillatre L (2019) Minimax classifier with box constraint on the priors. hal-02296592 Gilet C, Barbosa S, Fillatre L (2019) Minimax classifier with box constraint on the priors. hal-02296592
8.
Zurück zum Zitat Alber YI, Iusem AN, Solodov MV (1998) On the projected subgradient method for nonsmooth convex optimization in a hilbert space. Math Programming 81:23–35 MathSciNetMATH Alber YI, Iusem AN, Solodov MV (1998) On the projected subgradient method for nonsmooth convex optimization in a hilbert space. Math Programming 81:23–35
MathSciNetMATH
9.
Zurück zum Zitat Condat L (2016) Fast projection onto the simplex and the \(\ell _1\) ball. Math Programming 158(1):575–585 MathSciNetCrossRef Condat L (2016) Fast projection onto the simplex and the
\(\ell _1\) ball. Math Programming 158(1):575–585
MathSciNetCrossRef
10.
Zurück zum Zitat McCullagh P, Nelder JA (1990) Generalized linear models, 2nd edn. Chapman & Hall McCullagh P, Nelder JA (1990) Generalized linear models, 2nd edn. Chapman & Hall
11.
Zurück zum Zitat Breiman L (2001) Random forests. Mach Learn 45:5–32 CrossRef Breiman L (2001) Random forests. Mach Learn 45:5–32
CrossRef
12.
Zurück zum Zitat Christianini N, Shawe-Taylor JC (2000) An introduction to support vector machines and other Kernel-based learning methods. Cambridge University Press, Cambridge Christianini N, Shawe-Taylor JC (2000) An introduction to support vector machines and other Kernel-based learning methods. Cambridge University Press, Cambridge
13.
Zurück zum Zitat Reed WJ (1974) Random points in a simplex. Pacific J Math 54(2):183–198 MathSciNetCrossRef Reed WJ (1974) Random points in a simplex. Pacific J Math 54(2):183–198
MathSciNetCrossRef
- Titel
- Anomaly Detection with Discrete Minimax Classifier for Imbalanced Dataset or Uncertain Class Proportions
- DOI
- https://doi.org/10.1007/978-981-15-9199-0_17
- Autoren:
-
Cyprien Gilet
Lionel Fillatre
- Verlag
- Springer Singapore
- Sequenznummer
- 17