Skip to main content

2013 | OriginalPaper | Buchkapitel

16. Anti-adhesive and Antibacterial Polymer Brushes

verfasst von : K. G. Neoh, Z. L. Shi, E. T. Kang

Erschienen in: Biomaterials Associated Infection

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bacterial infection associated with medical devices is a serious ­complication. One promising strategy to combat this problem is the functionalization of the device surface with a dense layer of polymer chains which can resist bacterial adhesion and colonization. These polymer chains may present large exclusion volumes to inhibit protein and bacterial adhesion and/or possess ­bactericidal functional groups. The coating of surfaces with these polymers may be carried out via a number of techniques such as self-assembly, grafting and ­surface-initiated polymerization. This article focuses mainly on polymer coatings which achieved the antibacterial effect without the leaching of the bactericidal components into the environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Glossar
Bactericidal
Capable of destroying bacteria
Biofilm
An organized community of bacteria growing on a surface
Biomimetic
Biologically inspired
Chelator
A chemical that combines with metal ions and remove them from solution
Heterolinker
A molecule with dissimilar functional groups used for coupling other molecules
Hyperbranched
Multibranching structure
Inimer
A compound which contains both a polymerizable group and a group able to initiate polymerization by forming active species
Isoelectric point
The pH value at which a particular molecule or surface carries no net electrical charge
LCST
Lower critical solution temperature is the temperature below which a ­mixture is miscible
Macroinitiator
A polymer or oligomer which can initiate a polymerization reaction
PEGylation
Chemical process of modifying a molecule or surface with polyethylene glycol (PEG)
Physi-sorption
Process of adsorption where there is minimal perturbation of the electronic states of the adsorbed molecule and the surface. Also known as physical adsorption
Zwitterionic
A molecule which carries both a positive and a negative charge
Literatur
1.
Zurück zum Zitat Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2:114–22.CrossRef Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2:114–22.CrossRef
2.
Zurück zum Zitat Schachter B. Slimy business—the biotechnology of biofilms. Nat Biotech. 2003;21:361–5.CrossRef Schachter B. Slimy business—the biotechnology of biofilms. Nat Biotech. 2003;21:361–5.CrossRef
3.
Zurück zum Zitat Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588–95.CrossRef Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588–95.CrossRef
4.
Zurück zum Zitat Darouiche RO. Antimicrobial coating of devices for prevention of infection: principles and protection. Int J Artif Organs. 2007;30(9):820–7. Darouiche RO. Antimicrobial coating of devices for prevention of infection: principles and protection. Int J Artif Organs. 2007;30(9):820–7.
5.
Zurück zum Zitat Minko S. Grafting on solid surfaces: “Grafting to” and “grafting from” methods. In: Stamm M, editor. Polymer surfaces and interfaces. Berlin, Heidelberg: Springer; 2008. p. 215–34.CrossRef Minko S. Grafting on solid surfaces: “Grafting to” and “grafting from” methods. In: Stamm M, editor. Polymer surfaces and interfaces. Berlin, Heidelberg: Springer; 2008. p. 215–34.CrossRef
6.
Zurück zum Zitat Roosjen A, Norde W, van der Mei H, Busscher H. The use of positively charged or low surface free energy coatings versus polymer brushes in controlling biofilm formation. Prog Colloid Polym Sci. 2006;132:138–44.CrossRef Roosjen A, Norde W, van der Mei H, Busscher H. The use of positively charged or low surface free energy coatings versus polymer brushes in controlling biofilm formation. Prog Colloid Polym Sci. 2006;132:138–44.CrossRef
7.
Zurück zum Zitat Barbey R, Lavanant L, Paripovic D, et al. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev. 2009;109(11):5437–527.CrossRef Barbey R, Lavanant L, Paripovic D, et al. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev. 2009;109(11):5437–527.CrossRef
8.
Zurück zum Zitat Anthony MG, William JB. Recent advances in polymer brush synthesis. In: Advincula RC, Brittain WJ, Caster KC, Rühe J, editors. Polymer brushes. Weinheim: Wiley-VCH; 2005. p. 33–50. Anthony MG, William JB. Recent advances in polymer brush synthesis. In: Advincula RC, Brittain WJ, Caster KC, Rühe J, editors. Polymer brushes. Weinheim: Wiley-VCH; 2005. p. 33–50.
9.
Zurück zum Zitat Edmondson S, Osborne VL, Huck WT. Polymer brushes via surface-initiated polymerizations. Chem Soc Rev. 2004;33(1):14–22.CrossRef Edmondson S, Osborne VL, Huck WT. Polymer brushes via surface-initiated polymerizations. Chem Soc Rev. 2004;33(1):14–22.CrossRef
10.
Zurück zum Zitat Harris JM, Zalipsky S. Poly(ethylene glycol): chemistry and biological applications. ACS symposium series, 680. Washington, DC: American Chemical Society; 1997.CrossRef Harris JM, Zalipsky S. Poly(ethylene glycol): chemistry and biological applications. ACS symposium series, 680. Washington, DC: American Chemical Society; 1997.CrossRef
11.
Zurück zum Zitat Nejadnik MR, Olsson AL, Sharma PK, van der Mei HC, Norde W, Busscher HJ. Adsorption of Pluronic F-127 on surfaces with different hydrophobicities probed by quartz crystal microbalance with dissipation. Langmuir. 2009;25(11):6245–9.CrossRef Nejadnik MR, Olsson AL, Sharma PK, van der Mei HC, Norde W, Busscher HJ. Adsorption of Pluronic F-127 on surfaces with different hydrophobicities probed by quartz crystal microbalance with dissipation. Langmuir. 2009;25(11):6245–9.CrossRef
12.
Zurück zum Zitat McLean SC, Lioe H, Meagher L, Craig VSJ, Gee ML. Atomic force microscopy study of the interaction between adsorbed poly(ethylene oxide) layers: effects of surface modification and approach velocity. Langmuir. 2005;21(6):2199–208.CrossRef McLean SC, Lioe H, Meagher L, Craig VSJ, Gee ML. Atomic force microscopy study of the interaction between adsorbed poly(ethylene oxide) layers: effects of surface modification and approach velocity. Langmuir. 2005;21(6):2199–208.CrossRef
13.
Zurück zum Zitat Liu VA, Jastromb WE, Bhatia SN. Engineering protein and cell adhesivity using peo-terminated triblock polymers. J Biomed Mater Res. 2002;60(1):126–34.CrossRef Liu VA, Jastromb WE, Bhatia SN. Engineering protein and cell adhesivity using peo-terminated triblock polymers. J Biomed Mater Res. 2002;60(1):126–34.CrossRef
14.
Zurück zum Zitat Bridgett MJ, Davies MC, Denyer SP. Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants. Biomaterials. 1992;13(7):411–6.CrossRef Bridgett MJ, Davies MC, Denyer SP. Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants. Biomaterials. 1992;13(7):411–6.CrossRef
15.
Zurück zum Zitat Wesenberg-Ward KE, Tyler BJ, Sears JT. Adhesion and biofilm formation of Candida albicans on native and pluronic-treated polystyrene. Biofilms. 2005;2(01):63–71.CrossRef Wesenberg-Ward KE, Tyler BJ, Sears JT. Adhesion and biofilm formation of Candida albicans on native and pluronic-treated polystyrene. Biofilms. 2005;2(01):63–71.CrossRef
16.
Zurück zum Zitat Nejadnik MR, van der Mei HC, Norde W, Busscher HJ. Bacterial adhesion and growth on a polymer brush-coating. Biomaterials. 2008;29(30):4117–21.CrossRef Nejadnik MR, van der Mei HC, Norde W, Busscher HJ. Bacterial adhesion and growth on a polymer brush-coating. Biomaterials. 2008;29(30):4117–21.CrossRef
17.
Zurück zum Zitat Nejadnik MR, Engelsman AF, Saldarriaga Fernandez IC, Busscher HJ, Norde W, van der Mei HC. Bacterial colonization of polymer brush-coated and pristine silicone rubber implanted in infected pockets in mice. J Antimicrob Chemother. 2008;62(6):1323–5.CrossRef Nejadnik MR, Engelsman AF, Saldarriaga Fernandez IC, Busscher HJ, Norde W, van der Mei HC. Bacterial colonization of polymer brush-coated and pristine silicone rubber implanted in infected pockets in mice. J Antimicrob Chemother. 2008;62(6):1323–5.CrossRef
18.
Zurück zum Zitat Khoo XJ, Hamilton P, O’Toole GA, Snyder BD, Kenan DJ, Grinstaff MW. Directed assembly of PEGylated-peptide coatings for infection-resistant titanium metal. J Am Chem Soc. 2009;131(31):10992–7.CrossRef Khoo XJ, Hamilton P, O’Toole GA, Snyder BD, Kenan DJ, Grinstaff MW. Directed assembly of PEGylated-peptide coatings for infection-resistant titanium metal. J Am Chem Soc. 2009;131(31):10992–7.CrossRef
19.
Zurück zum Zitat Kenan DJ, Walsh EB, Meyers SR, et al. Peptide-PEG amphiphiles as cytophobic coatings for mammalian and bacterial cells. Chem Biol. 2006;13(7):695–700.CrossRef Kenan DJ, Walsh EB, Meyers SR, et al. Peptide-PEG amphiphiles as cytophobic coatings for mammalian and bacterial cells. Chem Biol. 2006;13(7):695–700.CrossRef
20.
Zurück zum Zitat Shimotoyodome A, Koudate T, Kobayashi H, et al. Reduction of streptococcus mutans adherence and dental biofilm formation by surface treatment with phosphorylated polyethylene glycol. Antimicrob Agents Chemother. 2007;51(10):3634–41.CrossRef Shimotoyodome A, Koudate T, Kobayashi H, et al. Reduction of streptococcus mutans adherence and dental biofilm formation by surface treatment with phosphorylated polyethylene glycol. Antimicrob Agents Chemother. 2007;51(10):3634–41.CrossRef
21.
Zurück zum Zitat Kenausis GL, Voros J, Elbert DL, et al. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phys Chem B. 2000;104(14):3298–309.CrossRef Kenausis GL, Voros J, Elbert DL, et al. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phys Chem B. 2000;104(14):3298–309.CrossRef
22.
Zurück zum Zitat Tosatti S, De Paul SM, Askendal A, et al. Peptide functionalized poly(L-lysine)-g-poly(ethylene glycol) on titanium: resistance to protein adsorption in full heparinized human blood plasma. Biomaterials. 2003;24(27):4949–58.CrossRef Tosatti S, De Paul SM, Askendal A, et al. Peptide functionalized poly(L-lysine)-g-poly(ethylene glycol) on titanium: resistance to protein adsorption in full heparinized human blood plasma. Biomaterials. 2003;24(27):4949–58.CrossRef
23.
Zurück zum Zitat Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials. 2004;25(18):4135–48.CrossRef Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials. 2004;25(18):4135–48.CrossRef
24.
Zurück zum Zitat Subbiahdoss G, Pidhatika B, Coullerez G, et al. Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating. Eur Cell Mater. 2010;19:205–13. Subbiahdoss G, Pidhatika B, Coullerez G, et al. Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating. Eur Cell Mater. 2010;19:205–13.
25.
Zurück zum Zitat Poelstra KA, Barekzi NA, Rediske AM, Felts AG, Slunt JB, Grainger DW. Prophylactic treatment of gram-positive and gram-negative abdominal implant infections using locally delivered polyclonal antibodies. J Biomed Mater Res. 2002;60:206–15.CrossRef Poelstra KA, Barekzi NA, Rediske AM, Felts AG, Slunt JB, Grainger DW. Prophylactic treatment of gram-positive and gram-negative abdominal implant infections using locally delivered polyclonal antibodies. J Biomed Mater Res. 2002;60:206–15.CrossRef
26.
Zurück zum Zitat VandeVondele S, Voros J, Hubbell JA. RGD-grafted poly-l-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol Bioeng. 2003;82(7):784–90.CrossRef VandeVondele S, Voros J, Hubbell JA. RGD-grafted poly-l-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol Bioeng. 2003;82(7):784–90.CrossRef
27.
Zurück zum Zitat Blättler TM, Pasche S, Textor M, Griesser HJ. High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates. Langmuir. 2006;22(13):5760–9.CrossRef Blättler TM, Pasche S, Textor M, Griesser HJ. High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates. Langmuir. 2006;22(13):5760–9.CrossRef
28.
Zurück zum Zitat Konradi R, Pidhatika B, Muhlebach A, Textor M. Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces. Langmuir. 2008;24(3):613–6.CrossRef Konradi R, Pidhatika B, Muhlebach A, Textor M. Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces. Langmuir. 2008;24(3):613–6.CrossRef
29.
Zurück zum Zitat Waschinski CJ, Tiller JC. Poly(oxazoline)s with telechelic antimicrobial functions. Biomacromolecules. 2005;6(1):235–43.CrossRef Waschinski CJ, Tiller JC. Poly(oxazoline)s with telechelic antimicrobial functions. Biomacromolecules. 2005;6(1):235–43.CrossRef
30.
Zurück zum Zitat Hoogenboom R. Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed. 2009;48(43):7978–94.CrossRef Hoogenboom R. Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed. 2009;48(43):7978–94.CrossRef
31.
Zurück zum Zitat Desai NP, Hubbell JA. Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials. 1991;12(2):144–53.CrossRef Desai NP, Hubbell JA. Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials. 1991;12(2):144–53.CrossRef
32.
Zurück zum Zitat Desai NP, Hossainy SF, Hubbell JA. Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials. 1992;13(7):417–20.CrossRef Desai NP, Hossainy SF, Hubbell JA. Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials. 1992;13(7):417–20.CrossRef
33.
Zurück zum Zitat Park KD, Kim YS, Han DK, et al. Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials. 1998;19(7–9):851–9.CrossRef Park KD, Kim YS, Han DK, et al. Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials. 1998;19(7–9):851–9.CrossRef
34.
Zurück zum Zitat Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L. Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir. 2003;19(17):6912–21.CrossRef Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L. Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir. 2003;19(17):6912–21.CrossRef
35.
Zurück zum Zitat Dong BY, Jiang HQ, Manolache S, Wong ACL, Denes FS. Plasma-mediated grafting of poly(ethylene glycol) on polyamide and polyester surfaces and evaluation of antifouling ability of modified substrates. Langmuir. 2007;23(13):7306–13.CrossRef Dong BY, Jiang HQ, Manolache S, Wong ACL, Denes FS. Plasma-mediated grafting of poly(ethylene glycol) on polyamide and polyester surfaces and evaluation of antifouling ability of modified substrates. Langmuir. 2007;23(13):7306–13.CrossRef
36.
Zurück zum Zitat Denes AR, Somers EB, Wong ACL, Ferencz G. 12-Crown-4-ether and tri(ethylene glycol) dimethyl-ether plasma-coated stainless steel surfaces and their ability to reduce bacterial biofilm deposition. J Appl Polym Sci. 2001;81(14):3425–38.CrossRef Denes AR, Somers EB, Wong ACL, Ferencz G. 12-Crown-4-ether and tri(ethylene glycol) dimethyl-ether plasma-coated stainless steel surfaces and their ability to reduce bacterial biofilm deposition. J Appl Polym Sci. 2001;81(14):3425–38.CrossRef
37.
Zurück zum Zitat Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–30.CrossRef Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–30.CrossRef
38.
Zurück zum Zitat Dalsin JL, Hu BH, Lee BP, Messersmith PB. Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc. 2003;125(14):4253–8.CrossRef Dalsin JL, Hu BH, Lee BP, Messersmith PB. Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc. 2003;125(14):4253–8.CrossRef
39.
Zurück zum Zitat Statz AR, Finlay J, Dalsin J, Callow M, Callow JA, Messersmith PB. Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels. Biofouling. 2006;22(5–6):391–9.CrossRef Statz AR, Finlay J, Dalsin J, Callow M, Callow JA, Messersmith PB. Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels. Biofouling. 2006;22(5–6):391–9.CrossRef
40.
Zurück zum Zitat Statz AR, Barron AE, Messersmith PB. Protein, cell and bacterial fouling resistance of polypeptoid-modified surfaces: effect of side-chain chemistry. Soft Matter. 2008;4(1):131–9.CrossRef Statz AR, Barron AE, Messersmith PB. Protein, cell and bacterial fouling resistance of polypeptoid-modified surfaces: effect of side-chain chemistry. Soft Matter. 2008;4(1):131–9.CrossRef
41.
Zurück zum Zitat Statz AR, Park JP, Chongsiriwatana NP, Barron AE, Messersmith PB. Surface-immobilised antimicrobial peptoids. Biofouling. 2008;24(6):439–48.CrossRef Statz AR, Park JP, Chongsiriwatana NP, Barron AE, Messersmith PB. Surface-immobilised antimicrobial peptoids. Biofouling. 2008;24(6):439–48.CrossRef
42.
Zurück zum Zitat Zurcher S, Wackerlin D, Bethuel Y, et al. Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. J Am Chem Soc. 2006;128(4):1064–5.CrossRef Zurcher S, Wackerlin D, Bethuel Y, et al. Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. J Am Chem Soc. 2006;128(4):1064–5.CrossRef
43.
Zurück zum Zitat Roosjen A, Kaper HJ, van der Mei HC, Norde W, Busscher HJ. Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. Microbiology. 2003;149(Pt 11):3239–46.CrossRef Roosjen A, Kaper HJ, van der Mei HC, Norde W, Busscher HJ. Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. Microbiology. 2003;149(Pt 11):3239–46.CrossRef
44.
Zurück zum Zitat Roosjen A, van der Mei HC, Busscher HJ, Norde W. Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir. 2004;20(25):10949–55.CrossRef Roosjen A, van der Mei HC, Busscher HJ, Norde W. Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir. 2004;20(25):10949–55.CrossRef
45.
Zurück zum Zitat Roosjen A, de Vries J, van der Mei HC, Norde W, Busscher HJ. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids. J Biomed Mater Res. 2005;73B(2):347–54.CrossRef Roosjen A, de Vries J, van der Mei HC, Norde W, Busscher HJ. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids. J Biomed Mater Res. 2005;73B(2):347–54.CrossRef
46.
Zurück zum Zitat Mei Y, Wu T, Xu C, et al. Tuning cell adhesion on gradient poly(2-hydroxyethyl methacrylate)-grafted surfaces. Langmuir. 2005;21(26):12309–14.CrossRef Mei Y, Wu T, Xu C, et al. Tuning cell adhesion on gradient poly(2-hydroxyethyl methacrylate)-grafted surfaces. Langmuir. 2005;21(26):12309–14.CrossRef
47.
Zurück zum Zitat Tugulu S, Arnold A, Sielaff I, Johnsson K, Klok HA. Protein-functionalized polymer brushes. Biomacromolecules. 2005;6(3):1602–7.CrossRef Tugulu S, Arnold A, Sielaff I, Johnsson K, Klok HA. Protein-functionalized polymer brushes. Biomacromolecules. 2005;6(3):1602–7.CrossRef
48.
Zurück zum Zitat Stefano T, Harm-Anton K. Surface modification of polydimethylsiloxane substrates with nonfouling poly(poly(ethylene glycol)methacrylate) brushes. Macromolecular Symposia. 2009;279(1):103–9.CrossRef Stefano T, Harm-Anton K. Surface modification of polydimethylsiloxane substrates with nonfouling poly(poly(ethylene glycol)methacrylate) brushes. Macromolecular Symposia. 2009;279(1):103–9.CrossRef
49.
Zurück zum Zitat Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A survey of structure−property relationships of surfaces that resist the adsorption of protein. Langmuir. 2001;17(18):5605–20.CrossRef Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A survey of structure−property relationships of surfaces that resist the adsorption of protein. Langmuir. 2001;17(18):5605–20.CrossRef
50.
Zurück zum Zitat Zhang Z, Chen S, Chang Y, Jiang S. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B. 2006;110(22):10799–804.CrossRef Zhang Z, Chen S, Chang Y, Jiang S. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B. 2006;110(22):10799–804.CrossRef
51.
Zurück zum Zitat Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28(29):4192–9.CrossRef Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28(29):4192–9.CrossRef
52.
Zurück zum Zitat Cheng G, Li G, Xue H, Chen S, Bryers JD, Jiang S. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials. 2009;30(28):5234–40.CrossRef Cheng G, Li G, Xue H, Chen S, Bryers JD, Jiang S. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials. 2009;30(28):5234–40.CrossRef
53.
Zurück zum Zitat Fundeanu I, van der Mei HC, Schouten AJ, Busscher HJ. Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. Colloids Surf B. 2008;64(2):297–301.CrossRef Fundeanu I, van der Mei HC, Schouten AJ, Busscher HJ. Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. Colloids Surf B. 2008;64(2):297–301.CrossRef
54.
Zurück zum Zitat Zhang F, Zhang Z, Zhu X, Kang ET, Neoh KG. Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials. 2008;29(36):4751–9.CrossRef Zhang F, Zhang Z, Zhu X, Kang ET, Neoh KG. Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials. 2008;29(36):4751–9.CrossRef
55.
Zurück zum Zitat Tugulu S, Klok HA. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Biomacromolecules. 2008;9(3):906–12.CrossRef Tugulu S, Klok HA. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Biomacromolecules. 2008;9(3):906–12.CrossRef
56.
Zurück zum Zitat Tiller JC, Liao CJ, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A. 2001;98(11):5981–5.CrossRef Tiller JC, Liao CJ, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A. 2001;98(11):5981–5.CrossRef
57.
Zurück zum Zitat Tiller JC, Lee SB, Lewis K, Klibanov AM. Polymer surfaces derivatized with poly(vinyl-n-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng. 2002;79(4):465–71.CrossRef Tiller JC, Lee SB, Lewis K, Klibanov AM. Polymer surfaces derivatized with poly(vinyl-n-­hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng. 2002;79(4):465–71.CrossRef
58.
Zurück zum Zitat Lin J, Qiu S, Lewis K, Klibanov AM. Bactericidal properties of flat surfaces and nanoparticles vderivatized with alkylated polyethylenimines. Biotechnol Prog. 2002;18(5):1082–6.CrossRef Lin J, Qiu S, Lewis K, Klibanov AM. Bactericidal properties of flat surfaces and nanoparticles vderivatized with alkylated polyethylenimines. Biotechnol Prog. 2002;18(5):1082–6.CrossRef
59.
Zurück zum Zitat Lin J, Qiu S, Lewis K, Klibanov AM. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng. 2003;83(2): 168–72.CrossRef Lin J, Qiu S, Lewis K, Klibanov AM. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng. 2003;83(2): 168–72.CrossRef
60.
Zurück zum Zitat Cen L, Neoh KG, Kang ET. Surface functionalization technique for conferring antibacterial properties to polymeric and cellulosic surfaces. Langmuir. 2003;19(24):10295–303.CrossRef Cen L, Neoh KG, Kang ET. Surface functionalization technique for conferring antibacterial properties to polymeric and cellulosic surfaces. Langmuir. 2003;19(24):10295–303.CrossRef
61.
Zurück zum Zitat Yao C, Li X, Neoh KG, Shi ZL, Kang ET. Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. J Membrane Sci. 2008;320(1–2):259–67.CrossRef Yao C, Li X, Neoh KG, Shi ZL, Kang ET. Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. J Membrane Sci. 2008;320(1–2):259–67.CrossRef
62.
Zurück zum Zitat Yao C, Li X, Neoh KG, Shi ZL, Kang ET. Antibacterial activities of surface modified electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fibrous membranes. Appl Surf Sci. 2009;255(6):3854–8.CrossRef Yao C, Li X, Neoh KG, Shi ZL, Kang ET. Antibacterial activities of surface modified electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fibrous membranes. Appl Surf Sci. 2009;255(6):3854–8.CrossRef
63.
Zurück zum Zitat Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4:1457–65.CrossRef Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4:1457–65.CrossRef
64.
Zurück zum Zitat No HK, Park NY, Lee SH, Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol. 2002;74:65–72.CrossRef No HK, Park NY, Lee SH, Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol. 2002;74:65–72.CrossRef
65.
Zurück zum Zitat Fu J, Ji J, Yuan W, Shen J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials. 2005;26:6684–92.CrossRef Fu J, Ji J, Yuan W, Shen J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials. 2005;26:6684–92.CrossRef
66.
Zurück zum Zitat Huh MW, Kang IK, Lee DH, et al. Surface characterization and antibacterial activity of chitosan-grafted poly(ethylene terephthalate) prepared by plasma glow discharge. J Appl Polym Sci. 2001;81:2769–78.CrossRef Huh MW, Kang IK, Lee DH, et al. Surface characterization and antibacterial activity of chitosan-grafted poly(ethylene terephthalate) prepared by plasma glow discharge. J Appl Polym Sci. 2001;81:2769–78.CrossRef
67.
Zurück zum Zitat Chua PH, Neoh KG, Shi ZL, Kang ET. Structural stability and bioapplicability assessment of hyaluronic acid–chitosan polyelectrolyte multilayers on titanium substrates. J Biomed Mater Res. 2008;87A:1061–74.CrossRef Chua PH, Neoh KG, Shi ZL, Kang ET. Structural stability and bioapplicability assessment of hyaluronic acid–chitosan polyelectrolyte multilayers on titanium substrates. J Biomed Mater Res. 2008;87A:1061–74.CrossRef
68.
Zurück zum Zitat Shi ZL, Neoh KG, Kang ET, Poh C, Wang W. Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide. J Biomed Mater Res. 2007;86A:865–72.CrossRef Shi ZL, Neoh KG, Kang ET, Poh C, Wang W. Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide. J Biomed Mater Res. 2007;86A:865–72.CrossRef
69.
Zurück zum Zitat Chen Y, Worley SD, Huang TS, et al. Biocidal polystyrene beads. III. Comparison of n-halamine and quat functional groups. J Appl Polym Sci. 2004;92(1):363–7.CrossRef Chen Y, Worley SD, Huang TS, et al. Biocidal polystyrene beads. III. Comparison of n-­halamine and quat functional groups. J Appl Polym Sci. 2004;92(1):363–7.CrossRef
70.
Zurück zum Zitat Cao ZB, Sun YY. N-halamine-based chitosan: preparation, characterization, and antimicrobial function. J Biomed Mater Res. 2008;85A(1):99–107.CrossRef Cao ZB, Sun YY. N-halamine-based chitosan: preparation, characterization, and antimicrobial function. J Biomed Mater Res. 2008;85A(1):99–107.CrossRef
71.
Zurück zum Zitat Luo J, Sun YY. Acyclic N-halamine-based biocidal tubing: preparation, characterization, and rechargeable biofilm-controlling functions. J Biomed Mater Res. 2008;84A(3):631–42.CrossRef Luo J, Sun YY. Acyclic N-halamine-based biocidal tubing: preparation, characterization, and rechargeable biofilm-controlling functions. J Biomed Mater Res. 2008;84A(3):631–42.CrossRef
72.
Zurück zum Zitat Luo J, Sun YY. Acyclic N-halamine-based fibrous materials: preparation, characterization, and biocidal functions. J Polym Sci. 2006;44A(11):3588–600. Luo J, Sun YY. Acyclic N-halamine-based fibrous materials: preparation, characterization, and biocidal functions. J Polym Sci. 2006;44A(11):3588–600.
73.
Zurück zum Zitat Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules. 2004;5(3):877–82.CrossRef Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules. 2004;5(3):877–82.CrossRef
74.
Zurück zum Zitat Murata H, Koepsel RR, Matyjaszewski K, Russell AJ. Permanent, non-leaching antibacterial surface–2: how high density cationic surfaces kill bacterial cells. Biomaterials. 2007;28(32): 4870–9.CrossRef Murata H, Koepsel RR, Matyjaszewski K, Russell AJ. Permanent, non-leaching antibacterial surface–2: how high density cationic surfaces kill bacterial cells. Biomaterials. 2007;28(32): 4870–9.CrossRef
75.
Zurück zum Zitat Huang J, Murata H, Koepsel RR, Russell AJ, Matyjaszewski K. Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules. 2007;8(5):1396–9.CrossRef Huang J, Murata H, Koepsel RR, Russell AJ, Matyjaszewski K. Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules. 2007;8(5):1396–9.CrossRef
76.
Zurück zum Zitat Xue J, Chen L, Wang HL, et al. Stimuli-responsive multifunctional membranes of controllable morphology from poly(vinylidene fluoride)-graft-poly[2-(N,N-dimethylamino)ethyl methacrylate] prepared via atom transfer radical polymerization. Langmuir. 2008;24(24): 14151–8.CrossRef Xue J, Chen L, Wang HL, et al. Stimuli-responsive multifunctional membranes of controllable morphology from poly(vinylidene fluoride)-graft-poly[2-(N,N-dimethylamino)ethyl methacrylate] prepared via atom transfer radical polymerization. Langmuir. 2008;24(24): 14151–8.CrossRef
77.
Zurück zum Zitat Roy D, Knapp JS, Guthrie JT, Perrier S. Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules. 2008;9(1):91–9.CrossRef Roy D, Knapp JS, Guthrie JT, Perrier S. Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules. 2008;9(1):91–9.CrossRef
78.
Zurück zum Zitat Zhang F, Shi ZL, Chua PH, Kang ET, Neoh KG. Functionalization of titanium surfaces via controlled living radical polymerization: from antibacterial surface to surface for osteoblast adhesion. Ind Eng Chem Res. 2007;46(26):9077–86.CrossRef Zhang F, Shi ZL, Chua PH, Kang ET, Neoh KG. Functionalization of titanium surfaces via controlled living radical polymerization: from antibacterial surface to surface for osteoblast adhesion. Ind Eng Chem Res. 2007;46(26):9077–86.CrossRef
79.
Zurück zum Zitat Ignatova M, Voccia S, Gilbert B, et al. Combination of electrografting and atom-transfer radical polymerization for making the stainless steel surface antibacterial and protein antiadhesive. Langmuir. 2006;22(1):255–62.CrossRef Ignatova M, Voccia S, Gilbert B, et al. Combination of electrografting and atom-transfer radical polymerization for making the stainless steel surface antibacterial and protein antiadhesive. Langmuir. 2006;22(1):255–62.CrossRef
80.
Zurück zum Zitat Ignatova M, Voccia S, Gabriel S, et al. Stainless steel grafting of hyperbranched polymer brushes with an antibacterial activity: synthesis, characterization, and properties. Langmuir. 2009;25(2):891–902.CrossRef Ignatova M, Voccia S, Gabriel S, et al. Stainless steel grafting of hyperbranched polymer brushes with an antibacterial activity: synthesis, characterization, and properties. Langmuir. 2009;25(2):891–902.CrossRef
81.
Zurück zum Zitat Huang J, Koepsel RR, Murata H, et al. Nonleaching antibacterial glass surfaces via “grafting onto”: the effect of the number of quaternary ammonium groups on biocidal activity. Langmuir. 2008;24(13):6785–95.CrossRef Huang J, Koepsel RR, Murata H, et al. Nonleaching antibacterial glass surfaces via “grafting onto”: the effect of the number of quaternary ammonium groups on biocidal activity. Langmuir. 2008;24(13):6785–95.CrossRef
82.
Zurück zum Zitat Cheng G, Xue H, Zhang Z, Chen S, Jiang S. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed. 2008;47(46):8831–4.CrossRef Cheng G, Xue H, Zhang Z, Chen S, Jiang S. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed. 2008;47(46):8831–4.CrossRef
83.
Zurück zum Zitat Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials. 2006;27(11):2450–67.CrossRef Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials. 2006;27(11):2450–67.CrossRef
84.
Zurück zum Zitat Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35(9):780–9.CrossRef Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35(9):780–9.CrossRef
85.
Zurück zum Zitat Wach JY, Bonazzi S, Gademann K. Antimicrobial surfaces through natural product hybrids. Angew Chem Int Ed. 2008;47(37):7123–6.CrossRef Wach JY, Bonazzi S, Gademann K. Antimicrobial surfaces through natural product hybrids. Angew Chem Int Ed. 2008;47(37):7123–6.CrossRef
86.
Zurück zum Zitat Aumsuwan N, Heinhorst S, Urban MW. Antibacterial surfaces on expanded polytetrafluoroethylene; penicillin attachment. Biomacromolecules. 2007;8(2):713–8.CrossRef Aumsuwan N, Heinhorst S, Urban MW. Antibacterial surfaces on expanded polytetrafluoroethylene; penicillin attachment. Biomacromolecules. 2007;8(2):713–8.CrossRef
87.
Zurück zum Zitat Aumsuwan N, Heinhorst S, Urban MW. The effectiveness of antibiotic activity of penicillin attached to expanded poly(tetrafluoroethylene) (ePTFE) surfaces: a quantitative assessment. Biomacromolecules. 2007;8(11):3525–30.CrossRef Aumsuwan N, Heinhorst S, Urban MW. The effectiveness of antibiotic activity of penicillin attached to expanded poly(tetrafluoroethylene) (ePTFE) surfaces: a quantitative assessment. Biomacromolecules. 2007;8(11):3525–30.CrossRef
88.
Zurück zum Zitat Aumsuwan N, Danyus RC, Heinhorst S, Urban MW. Attachment of ampicillin to expanded poly(tetrafluoroethylene): surface reactions leading to inhibition of microbial growth. Biomacromolecules. 2008;9(7):1712–8.CrossRef Aumsuwan N, Danyus RC, Heinhorst S, Urban MW. Attachment of ampicillin to expanded poly(tetrafluoroethylene): surface reactions leading to inhibition of microbial growth. Biomacromolecules. 2008;9(7):1712–8.CrossRef
89.
Zurück zum Zitat Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.CrossRef Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.CrossRef
90.
Zurück zum Zitat Zaiou M. Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med. 2007;85(4):317–29.CrossRef Zaiou M. Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med. 2007;85(4):317–29.CrossRef
91.
Zurück zum Zitat Bagheri M, Beyermann M, Dathe M. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Antimicrob Agents Chemother. 2009;53(3):1132–41.CrossRef Bagheri M, Beyermann M, Dathe M. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Antimicrob Agents Chemother. 2009;53(3):1132–41.CrossRef
92.
Zurück zum Zitat Matthew DS, Joseph HH. Covalent immobilization of an antimicrobial peptide on poly(ethylene) film. J Appl Polym Sci. 2008;110(5):2665–70.CrossRef Matthew DS, Joseph HH. Covalent immobilization of an antimicrobial peptide on poly(ethylene) film. J Appl Polym Sci. 2008;110(5):2665–70.CrossRef
93.
Zurück zum Zitat Gabriel M, Nazmi K, Veerman EC, Nieuw Amerongen AV, Zentner A. Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjug Chem. 2006;17(2):548–50.CrossRef Gabriel M, Nazmi K, Veerman EC, Nieuw Amerongen AV, Zentner A. Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjug Chem. 2006;17(2):548–50.CrossRef
94.
Zurück zum Zitat Glinel K, Jonas AM, Jouenne T, Leprince J, Galas L, Huck WT. Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem. 2009;20(1):71–7.CrossRef Glinel K, Jonas AM, Jouenne T, Leprince J, Galas L, Huck WT. Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem. 2009;20(1):71–7.CrossRef
95.
Zurück zum Zitat Klasen HJ. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns. 2000;26(2):117–30.CrossRef Klasen HJ. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns. 2000;26(2):117–30.CrossRef
96.
Zurück zum Zitat Klasen HJ. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns. 2000;26(2):131–8.CrossRef Klasen HJ. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns. 2000;26(2):131–8.CrossRef
97.
Zurück zum Zitat Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74(7):2171–8.CrossRef Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74(7):2171–8.CrossRef
98.
Zurück zum Zitat Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interf Sci. 2004;275(1):177–82.CrossRef Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interf Sci. 2004;275(1):177–82.CrossRef
99.
Zurück zum Zitat Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12: 1531–51.CrossRef Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12: 1531–51.CrossRef
100.
Zurück zum Zitat Ramstedt M, Cheng N, Azzaroni O, Mossialos D, Mathieu HJ, Huck WT. Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications. Langmuir. 2007;23(6):3314–21.CrossRef Ramstedt M, Cheng N, Azzaroni O, Mossialos D, Mathieu HJ, Huck WT. Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications. Langmuir. 2007;23(6):3314–21.CrossRef
101.
Zurück zum Zitat Tang F, Zhang LF, Zhang ZB, Cheng ZP, Zhu XL. Cellulose filter paper with antibacterial activity from surface-initiated ATRP. J Macromol Sci. 2009;46A(10):989–96. Tang F, Zhang LF, Zhang ZB, Cheng ZP, Zhu XL. Cellulose filter paper with antibacterial activity from surface-initiated ATRP. J Macromol Sci. 2009;46A(10):989–96.
102.
Zurück zum Zitat Ramstedt M, Ekstrand-Hammarstrom B, Shchukarev AV, et al. Bacterial and mammalian cell response to poly(3-sulfopropyl methacrylate) brushes loaded with silver halide salts. Biomaterials. 2009;30(8):1524–31.CrossRef Ramstedt M, Ekstrand-Hammarstrom B, Shchukarev AV, et al. Bacterial and mammalian cell response to poly(3-sulfopropyl methacrylate) brushes loaded with silver halide salts. Biomaterials. 2009;30(8):1524–31.CrossRef
Metadaten
Titel
Anti-adhesive and Antibacterial Polymer Brushes
verfasst von
K. G. Neoh
Z. L. Shi
E. T. Kang
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-1031-7_16

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.