Skip to main content
Erschienen in:

28.11.2022 | Technical Article

Antibacterial Cu-Doped HA/TiO2 Bioactive Ceramic Composite Coating with Enhanced Adhesion on Pure Ti

verfasst von: Jiawei Yang, Qiang Li, Junjie Li, Jinshuai Yang, Ran Zhang, Mitsuo Niinomi, Takayoshi Nakano

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 14/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cu-doped hydroxyapatite (HA)/TiO2 (CuHA/TiO2) bioactive ceramic composite coatings were prepared on Ti surfaces using an electrochemical method to enhance their adhesion and antibacterial properties. The obtained coatings were characterized by scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy, while their adhesion was measured using a scratch test. The maximum adhesion between the TiO2 layer and the substrate was 39.8 ± 2.6 N at an anodizing voltage of 180 V. Subsequently, the CuHA coatings were successfully deposited on the TiO2 layers and grown outward along TiO2 pores (during this process, Cu atoms are doped into the HA structure in the form of Cu2+ ions). The CuHA adhesion to the TiO2 layer was 26.3 ± 1.9 N, indicating that the TiO2 interlayer significantly enhanced the bonding of CuHA to the substrate. Furthermore, the fabricated CuHA/TiO2 coatings produced a strong antibacterial effect on Escherichia coli and Staphylococcus aureus species, exhibited high biocompatibility, and promoted the proliferation of MC3T3-E1 cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Wang, Y.A. Qing, L.G. Xiao, Y.G. Wang, X.F. Bao, Y.G. Qin, J.Y. Zhang, and K. Zhang, Design of New-Type F-FLC Artificial Joint Coatings via Fluorine Incorporation and Fullerene-Like Structure Construction, Surf. Coat. Tech., 2020, 385, p 125419. J. Wang, Y.A. Qing, L.G. Xiao, Y.G. Wang, X.F. Bao, Y.G. Qin, J.Y. Zhang, and K. Zhang, Design of New-Type F-FLC Artificial Joint Coatings via Fluorine Incorporation and Fullerene-Like Structure Construction, Surf. Coat. Tech., 2020, 385, p 125419.
2.
Zurück zum Zitat M. Pettersson, T. Berlind, S. Schmidt, S. Jacobson, L. Hultman, C. Persson, and H. Engqvist, Structure and Composition of Silicon Nitride and Silicon Carbon Nitride Coatings for Joint Replacements, Surf. Coat. Tech., 2013, 235, p 827–834. M. Pettersson, T. Berlind, S. Schmidt, S. Jacobson, L. Hultman, C. Persson, and H. Engqvist, Structure and Composition of Silicon Nitride and Silicon Carbon Nitride Coatings for Joint Replacements, Surf. Coat. Tech., 2013, 235, p 827–834.
3.
Zurück zum Zitat M. Cuervas-Mons, E. León-Román, C. Solans, Á. Martínez-Ayora, and J. Vaquero, Retrograde Tibial Nail and Trabecular Titanium Spacer Block for the Treatment of Missing Talus: a Rare Case ReporT, J. Foot Ankle Surg., 2020, 59(1), p 184–189. M. Cuervas-Mons, E. León-Román, C. Solans, Á. Martínez-Ayora, and J. Vaquero, Retrograde Tibial Nail and Trabecular Titanium Spacer Block for the Treatment of Missing Talus: a Rare Case ReporT, J. Foot Ankle Surg., 2020, 59(1), p 184–189.
4.
Zurück zum Zitat L. Korhonen, M. Perhomaa, A. Kyrö, T. Pokka, W. Serlo, J. Merikanto, and J.-J. Sinikumpu, Intramedullary Nailing of Forearm Shaft Fractures By Biodegradable Compared With Titanium Nails: Results of a Prospective Randomized Trial in Children with at Least 2 Years of Follow-Up, Biomaterials, 2018, 185, p 383–392. L. Korhonen, M. Perhomaa, A. Kyrö, T. Pokka, W. Serlo, J. Merikanto, and J.-J. Sinikumpu, Intramedullary Nailing of Forearm Shaft Fractures By Biodegradable Compared With Titanium Nails: Results of a Prospective Randomized Trial in Children with at Least 2 Years of Follow-Up, Biomaterials, 2018, 185, p 383–392.
5.
Zurück zum Zitat A. Civantos, E. Martínez-Campos, V. Ramos, C. Elvira, A. Gallardo, and A. Abarrateg, Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants, ACS Biomater. Sci. Eng., 2017, 3(7), p 1245–1261. A. Civantos, E. Martínez-Campos, V. Ramos, C. Elvira, A. Gallardo, and A. Abarrateg, Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants, ACS Biomater. Sci. Eng., 2017, 3(7), p 1245–1261.
6.
Zurück zum Zitat N.A. Hodges, E.M. Sussman, and J.P. Stegemann, Aseptic and Septic Prosthetic Joint Loosening: Impact of Biomaterial Wear on Immune Cell Function, Inflammation, and Infection, Biomaterials, 2021, 278, p 121127. N.A. Hodges, E.M. Sussman, and J.P. Stegemann, Aseptic and Septic Prosthetic Joint Loosening: Impact of Biomaterial Wear on Immune Cell Function, Inflammation, and Infection, Biomaterials, 2021, 278, p 121127.
7.
Zurück zum Zitat L. Fathyunes, J. Khalil-Allafi, S.O.R. Sheykholeslami, and M. Moosavifar, Biocompatibility Assessment of Graphene Oxide-Hydroxyapatite Coating Applied on TiO2 Nanotubes by Ultrasound-Assisted Pulse Electrodeposition, Mat. Sci. Eng. C. Mater., 2018, 87, p 10–21. L. Fathyunes, J. Khalil-Allafi, S.O.R. Sheykholeslami, and M. Moosavifar, Biocompatibility Assessment of Graphene Oxide-Hydroxyapatite Coating Applied on TiO2 Nanotubes by Ultrasound-Assisted Pulse Electrodeposition, Mat. Sci. Eng. C. Mater., 2018, 87, p 10–21.
8.
Zurück zum Zitat N. Karimi, M. Kharaziha, and K. Raeissi, Electrophoretic Deposition of Chitosan Reinforced Graphene Oxide-Hydroxyapatite on the Anodized Titanium to Improve Biological and Electrochemical Characteristics, Mat. Sci. Eng. C. Mater., 2019, 98, p 140–152. N. Karimi, M. Kharaziha, and K. Raeissi, Electrophoretic Deposition of Chitosan Reinforced Graphene Oxide-Hydroxyapatite on the Anodized Titanium to Improve Biological and Electrochemical Characteristics, Mat. Sci. Eng. C. Mater., 2019, 98, p 140–152.
9.
Zurück zum Zitat D.L. Qiu, L.J. Yang, Y.S. Yin, and A.P. Wang, Preparation and Characterization of Hydroxyapatite/Titania Composite Coating on NiTi Alloy by Electrochemical Deposition, Surf. Coat. Tech., 2011, 205(10), p 3280–3284. D.L. Qiu, L.J. Yang, Y.S. Yin, and A.P. Wang, Preparation and Characterization of Hydroxyapatite/Titania Composite Coating on NiTi Alloy by Electrochemical Deposition, Surf. Coat. Tech., 2011, 205(10), p 3280–3284.
10.
Zurück zum Zitat Z.J. Wu, L.P. He, and Z.Z. Chen, Composite Biocoating of Hydroxyapatite/Al2O3 on Titanium Formed by Al Anodization and Electrodeposition, Mater. Lett., 2007, 61(14–15), p 2952–2955. Z.J. Wu, L.P. He, and Z.Z. Chen, Composite Biocoating of Hydroxyapatite/Al2O3 on Titanium Formed by Al Anodization and Electrodeposition, Mater. Lett., 2007, 61(14–15), p 2952–2955.
11.
Zurück zum Zitat L. Suo, N. Jiang, Y. Wang, P.Y. Wang, J.Y. Chen, X.B. Pei, J. Wang, and Q.B. Wan, The Enhancement of Osseointegration Using a Graphene Oxide/Chitosan/Hydroxyapatite Composite Coating on Titanium Fabricated By Electrophoretic Deposition, J. Biomed. Mater. Res. B, 2019, 107, p 635–645. L. Suo, N. Jiang, Y. Wang, P.Y. Wang, J.Y. Chen, X.B. Pei, J. Wang, and Q.B. Wan, The Enhancement of Osseointegration Using a Graphene Oxide/Chitosan/Hydroxyapatite Composite Coating on Titanium Fabricated By Electrophoretic Deposition, J. Biomed. Mater. Res. B, 2019, 107, p 635–645.
12.
Zurück zum Zitat Y.H. Duan, S. Zhu, F. Gao, J.Y. Zhu, M. Li, J. Ma, and Q.S. Zhu, The Effect of Adhesive Strength of Hydroxyapatite Coating on the Stability of Hydroxyapatite-Coated Prostheses in Vivo at the Early Stage of Implantation, Arch. Med. Sci., 2012, 8, p 199–208. Y.H. Duan, S. Zhu, F. Gao, J.Y. Zhu, M. Li, J. Ma, and Q.S. Zhu, The Effect of Adhesive Strength of Hydroxyapatite Coating on the Stability of Hydroxyapatite-Coated Prostheses in Vivo at the Early Stage of Implantation, Arch. Med. Sci., 2012, 8, p 199–208.
13.
Zurück zum Zitat M. Hadidi, A. Bigham, E. Saebnoori, S.A. Hassanzadeh-Tabrizi, S. Rahmati, Z.M. Alizadeh, V. Nasirian, and M. Rafienia, Electrophoretic-Deposited Hydroxyapatite-Copper Nanocomposite as an Antibacterial Coating for Biomedical Applications, Surf. Coat. Tech., 2017, 321, p 171–179. (in English) M. Hadidi, A. Bigham, E. Saebnoori, S.A. Hassanzadeh-Tabrizi, S. Rahmati, Z.M. Alizadeh, V. Nasirian, and M. Rafienia, Electrophoretic-Deposited Hydroxyapatite-Copper Nanocomposite as an Antibacterial Coating for Biomedical Applications, Surf. Coat. Tech., 2017, 321, p 171–179. (in English)
14.
Zurück zum Zitat Y. Say, B. Aksakal, and B. Dikici, Effect of Hydroxyapatite/SiO2 Hybride Coatings on Surface Morphology and Corrosion Resistance of REX-734 Alloy, Ceram. Int., 2016, 42(8), p 10151–10158. Y. Say, B. Aksakal, and B. Dikici, Effect of Hydroxyapatite/SiO2 Hybride Coatings on Surface Morphology and Corrosion Resistance of REX-734 Alloy, Ceram. Int., 2016, 42(8), p 10151–10158.
15.
Zurück zum Zitat O. Yigit, N. Ozdemir, B. Dikici, and M. Kaseem, Surface Properties of Graphene Functionalized TiO2/nHA Hybrid Coatings Made on Ti6Al7Nb Alloys via Plasma Electrolytic Oxidation (PEO), Molecules, 2021, 26(13), p 3903. O. Yigit, N. Ozdemir, B. Dikici, and M. Kaseem, Surface Properties of Graphene Functionalized TiO2/nHA Hybrid Coatings Made on Ti6Al7Nb Alloys via Plasma Electrolytic Oxidation (PEO), Molecules, 2021, 26(13), p 3903.
16.
Zurück zum Zitat O. Yigit, B. Dikici, T.C. Senocak, and N. Ozdemir, One-Step Synthesis of Nano-Hydroxyapatite/Graphene Nanosheet Hybrid Coatings on Ti6Al4V Alloys by Hydrothermal Method and their in-vitro Corrosion Responses, Surf. Coat. Tech., 2020, 394, p 125858. O. Yigit, B. Dikici, T.C. Senocak, and N. Ozdemir, One-Step Synthesis of Nano-Hydroxyapatite/Graphene Nanosheet Hybrid Coatings on Ti6Al4V Alloys by Hydrothermal Method and their in-vitro Corrosion Responses, Surf. Coat. Tech., 2020, 394, p 125858.
17.
Zurück zum Zitat Y. Wu, Q.Q. Li, B.Y. Xu, H.Y. Fu, and Y. Li, Nano-Hydroxyapatite Coated TiO2 Nanotubes on Ti-19Zr-10Nb-1Fe Alloy Promotes Osteogenesis in vitro, Colloids. Surf. B, 2021, 207, p 112019. Y. Wu, Q.Q. Li, B.Y. Xu, H.Y. Fu, and Y. Li, Nano-Hydroxyapatite Coated TiO2 Nanotubes on Ti-19Zr-10Nb-1Fe Alloy Promotes Osteogenesis in vitro, Colloids. Surf. B, 2021, 207, p 112019.
18.
Zurück zum Zitat X.J. Long, L. Duan, W.J. Weng, K. Cheng, D.P. Wang, and H.W. Ouyang, Light-induced osteogenic differentiation of BMSCs with graphene/TiO2 composite coating on Ti implant, Colloids Surf. B, 2021, 207, p 111996. X.J. Long, L. Duan, W.J. Weng, K. Cheng, D.P. Wang, and H.W. Ouyang, Light-induced osteogenic differentiation of BMSCs with graphene/TiO2 composite coating on Ti implant, Colloids Surf. B, 2021, 207, p 111996.
19.
Zurück zum Zitat X. Cui, H.-M. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo, and T. Nakamura, Preparation of Bioactive Titania Films on Titanium Metal Via Anodic Oxidation, Dent. Mater., 2009, 25(1), p 80–86. X. Cui, H.-M. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo, and T. Nakamura, Preparation of Bioactive Titania Films on Titanium Metal Via Anodic Oxidation, Dent. Mater., 2009, 25(1), p 80–86.
20.
Zurück zum Zitat S. Khanmohammadi, M. Ojaghi-Ilkhchi, and M. Farrokhi-Rad, Development of Bioglass Coating Reinforced With Hydroxyapatite Whiskers on TiO2 Nanotubes via Electrophoretic Deposition, Ceram. Int., 2021, 47(1), p 1333–1343. S. Khanmohammadi, M. Ojaghi-Ilkhchi, and M. Farrokhi-Rad, Development of Bioglass Coating Reinforced With Hydroxyapatite Whiskers on TiO2 Nanotubes via Electrophoretic Deposition, Ceram. Int., 2021, 47(1), p 1333–1343.
21.
Zurück zum Zitat B. Feng, X.J. Chu, J.M. Chen, J.X. Wang, X. Lu, and J. Weng, Hydroxyapatite Coating on Titanium Surface with Titania Nanotube Layer and its Bond Strength to Substrate, J. Porous. Mater., 2010, 17(4), p 453–458. B. Feng, X.J. Chu, J.M. Chen, J.X. Wang, X. Lu, and J. Weng, Hydroxyapatite Coating on Titanium Surface with Titania Nanotube Layer and its Bond Strength to Substrate, J. Porous. Mater., 2010, 17(4), p 453–458.
22.
Zurück zum Zitat B. Dikici, M. Niinomi, M. Topuz, S.G. Koc, and M. Nakai, Synthesis of Biphasic Calcium Phosphate (BCP) Coatings on β-type Titanium Alloys Reinforced with Rutile-TiO2 Compounds: Adhesion Resistance And In-Vitro Corrosion, J. sol-gel Sci. Technol., 2018, 87, p 713–724. B. Dikici, M. Niinomi, M. Topuz, S.G. Koc, and M. Nakai, Synthesis of Biphasic Calcium Phosphate (BCP) Coatings on β-type Titanium Alloys Reinforced with Rutile-TiO2 Compounds: Adhesion Resistance And In-Vitro Corrosion, J. sol-gel Sci. Technol., 2018, 87, p 713–724.
23.
Zurück zum Zitat Y.-T. Sul, C.B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, and T. Albrektsson, Characteristics of the Surface Oxides on Turned and Electrochemically Oxidized Pure Titanium Implants up to Dielectric Breakdown: The Oxide Thickness, Micropore Configurations, Surface Roughness, Crystal Structure and Chemical Composition, Biomaterials, 2002, 23(2), p 491–501. Y.-T. Sul, C.B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, and T. Albrektsson, Characteristics of the Surface Oxides on Turned and Electrochemically Oxidized Pure Titanium Implants up to Dielectric Breakdown: The Oxide Thickness, Micropore Configurations, Surface Roughness, Crystal Structure and Chemical Composition, Biomaterials, 2002, 23(2), p 491–501.
24.
Zurück zum Zitat Y.-T. Sul, C.B. Johansson, Y. Jeong, and T. Albrektsson, The Electrochemical Oxide Growth Behaviour on Titanium in Acid and Alkaline Electrolytes, Med. Eng. Phys., 2001, 23(5), p 329–346. Y.-T. Sul, C.B. Johansson, Y. Jeong, and T. Albrektsson, The Electrochemical Oxide Growth Behaviour on Titanium in Acid and Alkaline Electrolytes, Med. Eng. Phys., 2001, 23(5), p 329–346.
25.
Zurück zum Zitat X.L. Zhu, K.-H. Kim, and Y. Jeong, Anodic Oxide Films Containing Ca and P of Titanium Biomaterial, Biomaterials, 2001, 22(16), p 2199–2206. X.L. Zhu, K.-H. Kim, and Y. Jeong, Anodic Oxide Films Containing Ca and P of Titanium Biomaterial, Biomaterials, 2001, 22(16), p 2199–2206.
26.
Zurück zum Zitat D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, and J. Breme, Preparation of TiO(2) layers on cp-Ti and Ti6Al4V by Thermal and Anodic Oxidation and by Sol-Gel Coating Techniques and Their Characterization, J. Biomed. Mater. Res., 2002, 59(1), p 18–28. D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, and J. Breme, Preparation of TiO(2) layers on cp-Ti and Ti6Al4V by Thermal and Anodic Oxidation and by Sol-Gel Coating Techniques and Their Characterization, J. Biomed. Mater. Res., 2002, 59(1), p 18–28.
27.
Zurück zum Zitat R. Rohanizadeh, M. Al-Sadeq, and R.Z. Legeros, Preparation of Different Forms of Titanium Oxide on Titanium Surface: Effects on Apatite Deposition, J. Biomed. Mater. Res. A, 2004, 71(2), p 343–352. R. Rohanizadeh, M. Al-Sadeq, and R.Z. Legeros, Preparation of Different Forms of Titanium Oxide on Titanium Surface: Effects on Apatite Deposition, J. Biomed. Mater. Res. A, 2004, 71(2), p 343–352.
28.
Zurück zum Zitat Q. Bi, X. Song, Y.J. Chen, Y.P. Zheng, P. Yin, and T. Lei, Zn-HA/Bi-HA Biphasic Coatings on Titanium: Fabrication, Characterization, Antibacterial and Biological Activity, Colloids. Surf. B, 2020, 189, p 110813. Q. Bi, X. Song, Y.J. Chen, Y.P. Zheng, P. Yin, and T. Lei, Zn-HA/Bi-HA Biphasic Coatings on Titanium: Fabrication, Characterization, Antibacterial and Biological Activity, Colloids. Surf. B, 2020, 189, p 110813.
29.
Zurück zum Zitat A. Rodríguez-Contreras, D. Torres, B. Rafik, M. Ortiz-Hernandez, M.P. Ginebra, J.A. Calero, J.M. Manero, and E. Ruperez, Bioactivity and Antibacterial Properties of Calcium- and Silver-Doped Coatings on 3D Printed Titanium Scaffolds, Surf. Coat. Tech., 2021, 421, p 127476. A. Rodríguez-Contreras, D. Torres, B. Rafik, M. Ortiz-Hernandez, M.P. Ginebra, J.A. Calero, J.M. Manero, and E. Ruperez, Bioactivity and Antibacterial Properties of Calcium- and Silver-Doped Coatings on 3D Printed Titanium Scaffolds, Surf. Coat. Tech., 2021, 421, p 127476.
30.
Zurück zum Zitat H. Hu, W. Zhang, Y. Qiao, X. Jiang, X. Liu, and C. Ding, Antibacterial Activity and Increased Bone Marrow Stem Cell Functions of Zn-Incorporated TiO2 Coatings on Titanium, Acta. Biomater., 2012, 8(2), p 904–915. H. Hu, W. Zhang, Y. Qiao, X. Jiang, X. Liu, and C. Ding, Antibacterial Activity and Increased Bone Marrow Stem Cell Functions of Zn-Incorporated TiO2 Coatings on Titanium, Acta. Biomater., 2012, 8(2), p 904–915.
31.
Zurück zum Zitat E.-J. Park, J. Yi, Y. Kim, K. Choi, and K. Park, Silver Nanoparticles Induce Cytotoxicity by a Trojan-Horse type Mechanism, Toxicol. In Vitro., 2010, 24(3), p 872–878. E.-J. Park, J. Yi, Y. Kim, K. Choi, and K. Park, Silver Nanoparticles Induce Cytotoxicity by a Trojan-Horse type Mechanism, Toxicol. In Vitro., 2010, 24(3), p 872–878.
32.
Zurück zum Zitat M. Thukkaram, M. Vaidulych, O. Kylián, P. Rigole, S. Aliakbarshirazi, M. Asadian, A. Nikiforov, H. Biederman, T. Coenye, G.D. Laing, R. Morent, A.V. Tongel, L.D. Wilde, K. Verbeken, and N.D. Geyter, Biological Activity and Antimicrobial Property of Cu/a-C: H Nanocomposites and Nanolayered Coatings on Titanium Substrates, Mat. Sci. Eng. C–Mater., 2021, 119, p 111513. M. Thukkaram, M. Vaidulych, O. Kylián, P. Rigole, S. Aliakbarshirazi, M. Asadian, A. Nikiforov, H. Biederman, T. Coenye, G.D. Laing, R. Morent, A.V. Tongel, L.D. Wilde, K. Verbeken, and N.D. Geyter, Biological Activity and Antimicrobial Property of Cu/a-C: H Nanocomposites and Nanolayered Coatings on Titanium Substrates, Mat. Sci. Eng. C–Mater., 2021, 119, p 111513.
33.
Zurück zum Zitat H.B. Wu, X.Y. Zhang, Z.H. Geng, Y. Yin, R.Q. Hang, X.B. Huang, X.H. Yao, and B. Tang, Preparation, Antibacterial Effects and Corrosion Resistant of Porous Cu-TiO2 Coatings, Appl. Surf. Sci., 2014, 308, p 43–49. H.B. Wu, X.Y. Zhang, Z.H. Geng, Y. Yin, R.Q. Hang, X.B. Huang, X.H. Yao, and B. Tang, Preparation, Antibacterial Effects and Corrosion Resistant of Porous Cu-TiO2 Coatings, Appl. Surf. Sci., 2014, 308, p 43–49.
34.
Zurück zum Zitat A. Hoppe, N.S. Güldal, and A.R. Boccaccini, A Review Of The Biological Response to Ionic Dissolution Products from Bioactive Glasses and Glass-Ceramics, Biomaterials, 2011, 32(11), p 2757–2774. A. Hoppe, N.S. Güldal, and A.R. Boccaccini, A Review Of The Biological Response to Ionic Dissolution Products from Bioactive Glasses and Glass-Ceramics, Biomaterials, 2011, 32(11), p 2757–2774.
35.
Zurück zum Zitat I. Burghardt, F. Lüthen, C. Prinz, B. Kreikemeyer, C. Zietz, H.-G. Neumann, and J. Rychly, A Dual Function of Copper in Designing Regenerative Implants, Biomaterials, 2015, 44, p 36–44. I. Burghardt, F. Lüthen, C. Prinz, B. Kreikemeyer, C. Zietz, H.-G. Neumann, and J. Rychly, A Dual Function of Copper in Designing Regenerative Implants, Biomaterials, 2015, 44, p 36–44.
36.
Zurück zum Zitat N.J. Lakhkar, I.-H. Lee, H.-W. Kim, V. Salih, I.B. Wall, and J.C. Knowles, Bone Formation Controlled by Biologically Relevant Inorganic Ions: Role and Controlled Delivery from Phosphate-Based Glasses, Adv. Drug. Deliv. Rev., 2013, 65(4), p 405–420. N.J. Lakhkar, I.-H. Lee, H.-W. Kim, V. Salih, I.B. Wall, and J.C. Knowles, Bone Formation Controlled by Biologically Relevant Inorganic Ions: Role and Controlled Delivery from Phosphate-Based Glasses, Adv. Drug. Deliv. Rev., 2013, 65(4), p 405–420.
37.
Zurück zum Zitat Q. Li, J.S. Yang, J.J. Li, R. Zhang, M. Nakai, M. Niinomi, and T. Nakano, Antibacterial Cu-Doped Calcium Phosphate Coating on pure Titanium, Mater. Trans., 2021, 62(7), p 1052–1055. (in English) Q. Li, J.S. Yang, J.J. Li, R. Zhang, M. Nakai, M. Niinomi, and T. Nakano, Antibacterial Cu-Doped Calcium Phosphate Coating on pure Titanium, Mater. Trans., 2021, 62(7), p 1052–1055. (in English)
38.
Zurück zum Zitat F. Hilario, V. Roche, R.P. Nogueira, and A.M.J. Junior, Influence of Morphology and Crystalline Structure of TiO2 Nanotubes on Their Electrochemical Properties and Apatite-Forming Ability, Electrochim. Acta., 2017, 245, p 337–349. F. Hilario, V. Roche, R.P. Nogueira, and A.M.J. Junior, Influence of Morphology and Crystalline Structure of TiO2 Nanotubes on Their Electrochemical Properties and Apatite-Forming Ability, Electrochim. Acta., 2017, 245, p 337–349.
39.
Zurück zum Zitat B.C. Yang, M. Uchida, H.-M. Kim, X.D. Zhang, and T. Kokubo, Preparation of Bioactive Titanium Metal via Anodic Oxidation Treatment, Biomaterials, 2004, 25(6), p 1003–1010. B.C. Yang, M. Uchida, H.-M. Kim, X.D. Zhang, and T. Kokubo, Preparation of Bioactive Titanium Metal via Anodic Oxidation Treatment, Biomaterials, 2004, 25(6), p 1003–1010.
40.
Zurück zum Zitat S. Ban, S. Maruno, A. Harada, M. Hattori, K. Narita, and J. Hasegawa, Effect of temperature on Morphology of Electrochemically-Deposited Calcium Phosphates, Dent. Mater. J., 1996, 15(1), p 31–38. S. Ban, S. Maruno, A. Harada, M. Hattori, K. Narita, and J. Hasegawa, Effect of temperature on Morphology of Electrochemically-Deposited Calcium Phosphates, Dent. Mater. J., 1996, 15(1), p 31–38.
41.
Zurück zum Zitat L. Ling, T.T. Li, M.C. Lin, Q. Jiang, H.T. Ren, C.W. Lou, and J.H. Lin, Effect of hydrogen Peroxide Concentration on the Nanostructure of Hydroxyapatite Coatings via Ultrasonic-Assisted Electrodeposition, Mater. Lett., 2020, 261, p 126989. L. Ling, T.T. Li, M.C. Lin, Q. Jiang, H.T. Ren, C.W. Lou, and J.H. Lin, Effect of hydrogen Peroxide Concentration on the Nanostructure of Hydroxyapatite Coatings via Ultrasonic-Assisted Electrodeposition, Mater. Lett., 2020, 261, p 126989.
42.
Zurück zum Zitat M.C. Biesinger, Advanced Analysis of Copper X-Ray Photoelectron Spectra, Surf. Interface. Anal., 2017, 49(13), p 1325–1334. M.C. Biesinger, Advanced Analysis of Copper X-Ray Photoelectron Spectra, Surf. Interface. Anal., 2017, 49(13), p 1325–1334.
43.
Zurück zum Zitat H. Pelletier, A. Carrado, J. Faerber, and I.N. Mihailescu, Microstructure and Mechanical Characteristics of Hydroxyapatite Coatings on Ti/TiN/Si Substrates Synthesized by Pulsed Laser Deposition, Appl. Phs. A, 2011, 102(3), p 629–640. H. Pelletier, A. Carrado, J. Faerber, and I.N. Mihailescu, Microstructure and Mechanical Characteristics of Hydroxyapatite Coatings on Ti/TiN/Si Substrates Synthesized by Pulsed Laser Deposition, Appl. Phs. A, 2011, 102(3), p 629–640.
44.
Zurück zum Zitat R.A. Surmenev, I.Y. Grubova, E. Neyts, A.D. Teresov, N.N. Koval, M. Epple, A.I. Tyurin, V.F. Pichugin, M.V. Chaikina, and M.A. Surmeneva, Ab Initio Calculations and a Scratch Test Study of RF-Magnetron Sputter Deposited Hydroxyapatite and Silicon-Containing Hydroxyapatite Coatings, Surf. Interfaces., 2020, 21, p 100727. R.A. Surmenev, I.Y. Grubova, E. Neyts, A.D. Teresov, N.N. Koval, M. Epple, A.I. Tyurin, V.F. Pichugin, M.V. Chaikina, and M.A. Surmeneva, Ab Initio Calculations and a Scratch Test Study of RF-Magnetron Sputter Deposited Hydroxyapatite and Silicon-Containing Hydroxyapatite Coatings, Surf. Interfaces., 2020, 21, p 100727.
45.
Zurück zum Zitat S. Ahmadi, I. Mohammadi, and S.K. Sadrnezhaad, Hydroxyapatite Based and Anodic Titania Nanotube Biocomposite Coatings: Fabrication, Characterization and Electrochemical Behavior, Surf. Coat. Tech., 2016, 287, p 67–15. S. Ahmadi, I. Mohammadi, and S.K. Sadrnezhaad, Hydroxyapatite Based and Anodic Titania Nanotube Biocomposite Coatings: Fabrication, Characterization and Electrochemical Behavior, Surf. Coat. Tech., 2016, 287, p 67–15.
46.
Zurück zum Zitat C.-M. Lin and S.-K. Yen, Characterization and Bond Strength of Electrolytic HA/TiO2 Double Layers for Orthopedic Applications, J. Mater. Sci. Mater. M., 2004, 15(11), p 1237–1246. C.-M. Lin and S.-K. Yen, Characterization and Bond Strength of Electrolytic HA/TiO2 Double Layers for Orthopedic Applications, J. Mater. Sci. Mater. M., 2004, 15(11), p 1237–1246.
47.
Zurück zum Zitat H. Farnoush, J.A. Mohandesi, and H. Çimenoğlu, Micro-scratch and Corrosion Behavior of Functionally Graded HA-TiO2 Nanostructured Composite Coatings Fabricated by Electrophoretic Deposition, J. Mech. Behav. Biomed., 2015, 46, p 31–40. H. Farnoush, J.A. Mohandesi, and H. Çimenoğlu, Micro-scratch and Corrosion Behavior of Functionally Graded HA-TiO2 Nanostructured Composite Coatings Fabricated by Electrophoretic Deposition, J. Mech. Behav. Biomed., 2015, 46, p 31–40.
48.
Zurück zum Zitat W.J. Weng, S. Zhang, K. Cheng, H.B. Qu, P.Y. Du, G. Shen, J. Yuan, and G.R. Han, Sol-gel Preparation of Bioactive Apatite Films, Surf. Coat. Tech., 2003, 167(2–3), p 292–296. W.J. Weng, S. Zhang, K. Cheng, H.B. Qu, P.Y. Du, G. Shen, J. Yuan, and G.R. Han, Sol-gel Preparation of Bioactive Apatite Films, Surf. Coat. Tech., 2003, 167(2–3), p 292–296.
49.
Zurück zum Zitat S.L. Mei, H.Y. Wang, W. Wang, L.P. Tong, H.B. Pan, C.S. Ruan, Q.L. Ma, M.Y. Liu, H.L. Yang, L. Zhang, Y.C. Cheng, Y.M. Zhang, L.Z. Zhao, and P.K. Chu, Antibacterial Effects and Biocompatibility of Titanium Surfaces with Graded Silver Incorporation in Titania Nanotubes, Biomaterials, 2014, 35(14), p 4255–4265. S.L. Mei, H.Y. Wang, W. Wang, L.P. Tong, H.B. Pan, C.S. Ruan, Q.L. Ma, M.Y. Liu, H.L. Yang, L. Zhang, Y.C. Cheng, Y.M. Zhang, L.Z. Zhao, and P.K. Chu, Antibacterial Effects and Biocompatibility of Titanium Surfaces with Graded Silver Incorporation in Titania Nanotubes, Biomaterials, 2014, 35(14), p 4255–4265.
50.
Zurück zum Zitat N. Murugan, C. Murugan, and A.K. Sundramoorthy, In Vitro and In Vivo Characterization of Mineralized Hydroxyapatite/Polycaprolactone-Graphene Oxide Based Bioactive Multifunctional Coating on Ti Alloy for Bone Implant Applications, Arab. J. Chem., 2018, 11(6), p 959–969. N. Murugan, C. Murugan, and A.K. Sundramoorthy, In Vitro and In Vivo Characterization of Mineralized Hydroxyapatite/Polycaprolactone-Graphene Oxide Based Bioactive Multifunctional Coating on Ti Alloy for Bone Implant Applications, Arab. J. Chem., 2018, 11(6), p 959–969.
51.
Zurück zum Zitat J. Liu, F.B. Li, C. Liu, H.Y. Wang, B.R. Ren, K. Yang, and E.L. Zhang, Effect of Cu Content on the Antibacterial Activity of Titanium-Copper Sintered Alloys, Mat. Sci. Eng. C–Mater., 2014, 35(1), p 392–400. J. Liu, F.B. Li, C. Liu, H.Y. Wang, B.R. Ren, K. Yang, and E.L. Zhang, Effect of Cu Content on the Antibacterial Activity of Titanium-Copper Sintered Alloys, Mat. Sci. Eng. C–Mater., 2014, 35(1), p 392–400.
52.
Zurück zum Zitat R.Q. Hang, A. Gao, X.B. Huang, X.G. Wang, X.Y. Zhang, L. Qin, and B. Tang, Antibacterial Activity and Cytocompatibility of Cu-Ti-O Nanotubes, J. Biomed. Mater. Res. A, 2014, 102(6), p 1850–1858. R.Q. Hang, A. Gao, X.B. Huang, X.G. Wang, X.Y. Zhang, L. Qin, and B. Tang, Antibacterial Activity and Cytocompatibility of Cu-Ti-O Nanotubes, J. Biomed. Mater. Res. A, 2014, 102(6), p 1850–1858.
Metadaten
Titel
Antibacterial Cu-Doped HA/TiO2 Bioactive Ceramic Composite Coating with Enhanced Adhesion on Pure Ti
verfasst von
Jiawei Yang
Qiang Li
Junjie Li
Jinshuai Yang
Ran Zhang
Mitsuo Niinomi
Takayoshi Nakano
Publikationsdatum
28.11.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 14/2023
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07541-6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.