Skip to main content

2023 | OriginalPaper | Buchkapitel

5. Antibacterial Properties of Two-Dimensional Nanomaterials

verfasst von : Elishba Noor, Usman Liaqat, Waqas Qamar Zaman, Sabir Hussain, Asif Shahzad, Kashif Rasool, Zaeem Bin Babar, Waheed Miran

Erschienen in: Two-Dimensional Materials for Environmental Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many bacterial species have developed the ability to tolerate multiple drugs, and hence there is a severe threat in treating infectious diseases. Since the conventional drugs are becoming largely ineffective, there is an urgent need to find novel antibacterial strategies. To this end, the development of nanomaterials, mainly two-dimensional (2D) nanomaterials, has emerged as a new class of antimicrobial agents that demonstrate strong antimicrobial properties and are less susceptible to bacterial resistance. Various mechanisms associated with the antibacterial activity of 2D nanomaterials have been exhibited, including physical or mechanical damage, the release of controlled drug/metallic ions, multi-mode synergistic antibacterial activity, oxidative stress, and photothermal/photodynamic effects. In addition to the detailed mechanisms involved in antibacterial activities, this chapter discusses various types of 2D nanomaterials used for antibacterial activities. For better understanding, the 2D nanomaterials are classified into carbon and non-carbon based for antibacterial activities. The present challenges and possible future directions for the development of 2D nanomaterials with advanced antimicrobial properties are also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.E. Baker, A.S. Mahmud, I.F. Miller, M. Rajeev, F. Rasambainarivo, B.L. Rice, S. Takahashi, A.J. Tatem, C.E. Wagner, L.-F. Wang, A. Wesolowski, C.J.E. Metcalf, Infectious disease in an era of global change. Nat. Rev. Microbiol. 20, 193–205 (2022)CrossRef R.E. Baker, A.S. Mahmud, I.F. Miller, M. Rajeev, F. Rasambainarivo, B.L. Rice, S. Takahashi, A.J. Tatem, C.E. Wagner, L.-F. Wang, A. Wesolowski, C.J.E. Metcalf, Infectious disease in an era of global change. Nat. Rev. Microbiol. 20, 193–205 (2022)CrossRef
2.
Zurück zum Zitat L. Giraud, A. Tourrette, E. Flahaut, Carbon nanomaterials-based polymer-matrix nanocomposites for antimicrobial applications: a review. Carbon 182, 463–483 (2021)CrossRef L. Giraud, A. Tourrette, E. Flahaut, Carbon nanomaterials-based polymer-matrix nanocomposites for antimicrobial applications: a review. Carbon 182, 463–483 (2021)CrossRef
3.
Zurück zum Zitat M.I. Hutchings, A.W. Truman, B. Wilkinson, Antibiotics: past, present and future. Curr. Opin. Microbiol. 51, 72–80 (2019)CrossRef M.I. Hutchings, A.W. Truman, B. Wilkinson, Antibiotics: past, present and future. Curr. Opin. Microbiol. 51, 72–80 (2019)CrossRef
4.
Zurück zum Zitat M.E. Olson, H. Ceri, D.W. Morck, A.G. Buret, R.R. Read, Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can. J. Vet. Res. 66, 86–92 (2002) M.E. Olson, H. Ceri, D.W. Morck, A.G. Buret, R.R. Read, Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can. J. Vet. Res. 66, 86–92 (2002)
5.
Zurück zum Zitat V. Nizet, Stopping superbugs, maintaining the microbiota. Sci. Transl. Med. 7, 295ed8–295ed8 (2015) V. Nizet, Stopping superbugs, maintaining the microbiota. Sci. Transl. Med. 7, 295ed8–295ed8 (2015)
6.
Zurück zum Zitat C.L. Ventola, The antibiotic resistance crisis: part 1: causes and threats. P t 40, 277–283 (2015) C.L. Ventola, The antibiotic resistance crisis: part 1: causes and threats. P t 40, 277–283 (2015)
7.
Zurück zum Zitat M.E. de Kraker, A.J. Stewardson, S. Harbarth, Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 13, e1002184 (2016)CrossRef M.E. de Kraker, A.J. Stewardson, S. Harbarth, Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 13, e1002184 (2016)CrossRef
8.
Zurück zum Zitat E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A.M. Silva, A. Durazzo, A. Santini, M.L. Garcia, E.B. Souto, Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials (Basel) 10 (2020) E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A.M. Silva, A. Durazzo, A. Santini, M.L. Garcia, E.B. Souto, Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials (Basel) 10 (2020)
9.
Zurück zum Zitat S. Sharmin, M.M. Rahaman, C. Sarkar, O. Atolani, M.T. Islam, O.S. Adeyemi, Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study. Heliyon 7, e06456 (2021)CrossRef S. Sharmin, M.M. Rahaman, C. Sarkar, O. Atolani, M.T. Islam, O.S. Adeyemi, Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study. Heliyon 7, e06456 (2021)CrossRef
10.
Zurück zum Zitat M.A. Gatoo, S. Naseem, M.Y. Arfat, A.M. Dar, K. Qasim, S. Zubair, Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed. Res. Int. 2014, 498420 (2014)CrossRef M.A. Gatoo, S. Naseem, M.Y. Arfat, A.M. Dar, K. Qasim, S. Zubair, Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed. Res. Int. 2014, 498420 (2014)CrossRef
11.
Zurück zum Zitat B. Jia, X. Du, W. Wang, Y. Qu, X. Liu, M. Zhao, W. Li, Y.-Q. Li, Nanophysical antimicrobial strategies: a rational deployment of nanomaterials and physical stimulations in combating bacterial infections. Adv. Sci. 9, 2105252 (2022)CrossRef B. Jia, X. Du, W. Wang, Y. Qu, X. Liu, M. Zhao, W. Li, Y.-Q. Li, Nanophysical antimicrobial strategies: a rational deployment of nanomaterials and physical stimulations in combating bacterial infections. Adv. Sci. 9, 2105252 (2022)CrossRef
12.
Zurück zum Zitat L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 12, 1227–1249 (2017)CrossRef L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 12, 1227–1249 (2017)CrossRef
13.
Zurück zum Zitat T. Seifi, A.R. Kamali, Anti-pathogenic activity of graphene nanomaterials: a review. Colloids Surf., B 199, 111509 (2021)CrossRef T. Seifi, A.R. Kamali, Anti-pathogenic activity of graphene nanomaterials: a review. Colloids Surf., B 199, 111509 (2021)CrossRef
14.
Zurück zum Zitat S. Begum, A. Pramanik, D. Davis, S. Patibandla, K. Gates, Y. Gao, P.C. Ray, 2D and heterostructure nanomaterial based strategies for combating drug-resistant bacteria. ACS Omega 5, 3116–3130 (2020)CrossRef S. Begum, A. Pramanik, D. Davis, S. Patibandla, K. Gates, Y. Gao, P.C. Ray, 2D and heterostructure nanomaterial based strategies for combating drug-resistant bacteria. ACS Omega 5, 3116–3130 (2020)CrossRef
15.
Zurück zum Zitat B. Anasori, Y. Gogotsi, Introduction to 2D Transition Metal Carbides and Nitrides (MXenes). 2D Metal Carbides and Nitrides (MXenes) (Springer, 2019) B. Anasori, Y. Gogotsi, Introduction to 2D Transition Metal Carbides and Nitrides (MXenes). 2D Metal Carbides and Nitrides (MXenes) (Springer, 2019)
16.
Zurück zum Zitat M. Sathishkumar, S. Geethalakshmi, M. Saroja, M. Venkatachalam, P. Gowthaman, Chapter Three—Antimicrobial activities of biosynthesized nanomaterials, in Comprehensive Analytical Chemistry, ed. S.K. Verma, A.K. Das (Elsevier, 2021) M. Sathishkumar, S. Geethalakshmi, M. Saroja, M. Venkatachalam, P. Gowthaman, Chapter Three—Antimicrobial activities of biosynthesized nanomaterials, in Comprehensive Analytical Chemistry, ed. S.K. Verma, A.K. Das (Elsevier, 2021)
17.
Zurück zum Zitat Q. Xin, H. Shah, A. Nawaz, W. Xie, M.Z. Akram, A. Batool, L. Tian, S.U. Jan, R. Boddula, B. Guo, Q. Liu, J.R. Gong, Antibacterial carbon-based nanomaterials. Adv. Mater. 31, 1804838 (2019)CrossRef Q. Xin, H. Shah, A. Nawaz, W. Xie, M.Z. Akram, A. Batool, L. Tian, S.U. Jan, R. Boddula, B. Guo, Q. Liu, J.R. Gong, Antibacterial carbon-based nanomaterials. Adv. Mater. 31, 1804838 (2019)CrossRef
18.
Zurück zum Zitat L. Mei, S. Zhu, W. Yin, C. Chen, G. Nie, Z. Gu, Y. Zhao, Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 10, 757 (2020)CrossRef L. Mei, S. Zhu, W. Yin, C. Chen, G. Nie, Z. Gu, Y. Zhao, Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 10, 757 (2020)CrossRef
19.
Zurück zum Zitat Y. Li, X. Liu, L. Tan, Z. Cui, D. Jing, X. Yang, Y. Liang, Z. Li, S. Zhu, Y. Zheng, Eradicating multidrug-resistant bacteria rapidly using a multi functional g-C3N4@ Bi2S3 nanorod heterojunction with or without antibiotics. Adv. Func. Mater. 29, 1900946 (2019)CrossRef Y. Li, X. Liu, L. Tan, Z. Cui, D. Jing, X. Yang, Y. Liang, Z. Li, S. Zhu, Y. Zheng, Eradicating multidrug-resistant bacteria rapidly using a multi functional g-C3N4@ Bi2S3 nanorod heterojunction with or without antibiotics. Adv. Func. Mater. 29, 1900946 (2019)CrossRef
20.
Zurück zum Zitat Y. Wang, Y. Jin, W. Chen, J. Wang, H. Chen, L. Sun, X. Li, J. Ji, Q. Yu, L. Shen, Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem. Eng. J. 358, 74–90 (2019)CrossRef Y. Wang, Y. Jin, W. Chen, J. Wang, H. Chen, L. Sun, X. Li, J. Ji, Q. Yu, L. Shen, Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem. Eng. J. 358, 74–90 (2019)CrossRef
21.
Zurück zum Zitat A. Gupta, S. Mumtaz, C.-H. Li, I. Hussain, V.M. Rotello, Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 48, 415–427 (2019)CrossRef A. Gupta, S. Mumtaz, C.-H. Li, I. Hussain, V.M. Rotello, Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 48, 415–427 (2019)CrossRef
22.
Zurück zum Zitat X.-L. Hu, Y. Shang, K.-C. Yan, A.C. Sedgwick, H.-Q. Gan, G.-R. Chen, X.-P. He, T.D. James, D. Chen, Low-dimensional nanomaterials for antibacterial applications. J. Mater. Chem. B 9, 3640–3661 (2021)CrossRef X.-L. Hu, Y. Shang, K.-C. Yan, A.C. Sedgwick, H.-Q. Gan, G.-R. Chen, X.-P. He, T.D. James, D. Chen, Low-dimensional nanomaterials for antibacterial applications. J. Mater. Chem. B 9, 3640–3661 (2021)CrossRef
23.
Zurück zum Zitat N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, R. Hazan, Alternative antimicrobial approach: nano-antimicrobial materials. Evid.-Based Complement. Alternat. Med. (2015) N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, R. Hazan, Alternative antimicrobial approach: nano-antimicrobial materials. Evid.-Based Complement. Alternat. Med. (2015)
24.
Zurück zum Zitat L. Shi, J. Chen, L. Teng, L. Wang, G. Zhu, S. Liu, Z. Luo, X. Shi, Y. Wang, L. Ren, The antibacterial applications of graphene and its derivatives. Small 12, 4165–4184 (2016)CrossRef L. Shi, J. Chen, L. Teng, L. Wang, G. Zhu, S. Liu, Z. Luo, X. Shi, Y. Wang, L. Ren, The antibacterial applications of graphene and its derivatives. Small 12, 4165–4184 (2016)CrossRef
25.
Zurück zum Zitat L.-S. Wang, A. Gupta, V.M. Rotello, Nanomaterials for the treatment of bacterial biofilms. ACS Infect. Dis. 2, 3–4 (2016)CrossRef L.-S. Wang, A. Gupta, V.M. Rotello, Nanomaterials for the treatment of bacterial biofilms. ACS Infect. Dis. 2, 3–4 (2016)CrossRef
26.
Zurück zum Zitat Y. Wang, Y. Yang, Y. Shi, H. Song, C. Yu, Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv. Mater. 32, 1904106 (2020)CrossRef Y. Wang, Y. Yang, Y. Shi, H. Song, C. Yu, Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv. Mater. 32, 1904106 (2020)CrossRef
27.
Zurück zum Zitat K. Lohner, New strategies for novel antibiotics: peptides targeting bacterial cell membranes. Gen. Physiol. Biophys. 28, 105–116 (2009)CrossRef K. Lohner, New strategies for novel antibiotics: peptides targeting bacterial cell membranes. Gen. Physiol. Biophys. 28, 105–116 (2009)CrossRef
28.
Zurück zum Zitat S. Akira, S. Uematsu, O. Takeuchi, Pathogen recognition and innate immunity. Cell 124, 783–801 (2006)CrossRef S. Akira, S. Uematsu, O. Takeuchi, Pathogen recognition and innate immunity. Cell 124, 783–801 (2006)CrossRef
29.
Zurück zum Zitat E.P. Ivanova, J. Hasan, H.K. Webb, G. Gervinskas, S. Juodkazis, V.K. Truong, A.H. Wu, R.N. Lamb, V.A. Baulin, G.S. Watson, Bactericidal activity of black silicon. Nat. Commun. 4, 1–7 (2013)CrossRef E.P. Ivanova, J. Hasan, H.K. Webb, G. Gervinskas, S. Juodkazis, V.K. Truong, A.H. Wu, R.N. Lamb, V.A. Baulin, G.S. Watson, Bactericidal activity of black silicon. Nat. Commun. 4, 1–7 (2013)CrossRef
30.
Zurück zum Zitat X. Lu, X. Feng, J.R. Werber, C. Chu, I. Zucker, J.-H. Kim, C.O. Osuji, M. Elimelech, Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. 114, E9793–E9801 (2017)CrossRef X. Lu, X. Feng, J.R. Werber, C. Chu, I. Zucker, J.-H. Kim, C.O. Osuji, M. Elimelech, Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. 114, E9793–E9801 (2017)CrossRef
31.
Zurück zum Zitat K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, New function of molybdenum trioxide nanoplates: toxicity towards pathogenic bacteria through membrane stress. Colloids Surf., B 112, 521–524 (2013)CrossRef K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, New function of molybdenum trioxide nanoplates: toxicity towards pathogenic bacteria through membrane stress. Colloids Surf., B 112, 521–524 (2013)CrossRef
32.
Zurück zum Zitat R. Kurapati, K. Kostarelos, M. Prato, A. Bianco, Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Adv. Mater. 28, 6052–6074 (2016)CrossRef R. Kurapati, K. Kostarelos, M. Prato, A. Bianco, Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Adv. Mater. 28, 6052–6074 (2016)CrossRef
33.
Zurück zum Zitat P. Singh, P. Shandilya, P. Raizada, A. Sudhaik, A. Rahmani-Sani, A. Hosseini-Bandegharaei, Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab. J. Chem. 13, 3498–3520 (2020)CrossRef P. Singh, P. Shandilya, P. Raizada, A. Sudhaik, A. Rahmani-Sani, A. Hosseini-Bandegharaei, Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab. J. Chem. 13, 3498–3520 (2020)CrossRef
34.
Zurück zum Zitat J.A. Lemire, J.J. Harrison, R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013)CrossRef J.A. Lemire, J.J. Harrison, R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013)CrossRef
35.
Zurück zum Zitat M.Y. Memar, R. Ghotaslou, M. Samiei, K. Adibkia, Antimicrobial use of reactive oxygen therapy: current insights. Infect. Drug Resist. 11, 567 (2018)CrossRef M.Y. Memar, R. Ghotaslou, M. Samiei, K. Adibkia, Antimicrobial use of reactive oxygen therapy: current insights. Infect. Drug Resist. 11, 567 (2018)CrossRef
36.
Zurück zum Zitat Z. Shaw, S. Kuriakose, S. Cheeseman, M.D. Dickey, J. Genzer, A.J. Christofferson, R.J. Crawford, C.F. McConville, J. Chapman, V.K. Truong, Antipathogenic properties and applications of low-dimensional materials. Nat. Commun. 12, 1–19 (2021)CrossRef Z. Shaw, S. Kuriakose, S. Cheeseman, M.D. Dickey, J. Genzer, A.J. Christofferson, R.J. Crawford, C.F. McConville, J. Chapman, V.K. Truong, Antipathogenic properties and applications of low-dimensional materials. Nat. Commun. 12, 1–19 (2021)CrossRef
37.
Zurück zum Zitat J. Chen, X. Wang, H. Han, A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae. J. Nanoparticle Res. 15, 1–14 (2013) J. Chen, X. Wang, H. Han, A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae. J. Nanoparticle Res. 15, 1–14 (2013)
38.
Zurück zum Zitat S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala, J.-H. Kim, Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 7, 5901 (2012)CrossRef S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala, J.-H. Kim, Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 7, 5901 (2012)CrossRef
39.
Zurück zum Zitat F. Perreault, A.F. De Faria, S. Nejati, M. Elimelech, Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 9, 7226–7236 (2015)CrossRef F. Perreault, A.F. De Faria, S. Nejati, M. Elimelech, Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 9, 7226–7236 (2015)CrossRef
40.
Zurück zum Zitat D.K. Ji, Y. Zhang, Y. Zang, J. Li, G.R. Chen, X.P. He, H. Tian, Targeted intracellular production of reactive oxygen species by a 2D molybdenum disulfide glycosheet. Adv. Mater. 28, 9356–9363 (2016)CrossRef D.K. Ji, Y. Zhang, Y. Zang, J. Li, G.R. Chen, X.P. He, H. Tian, Targeted intracellular production of reactive oxygen species by a 2D molybdenum disulfide glycosheet. Adv. Mater. 28, 9356–9363 (2016)CrossRef
41.
Zurück zum Zitat G.S. Bang, S. Cho, N. Son, G.W. Shim, B.-K. Cho, S.-Y. Choi, DNA-assisted exfoliation of tungsten dichalcogenides and their antibacterial effect. ACS Appl. Mater. Interf. 8, 1943–1950 (2016)CrossRef G.S. Bang, S. Cho, N. Son, G.W. Shim, B.-K. Cho, S.-Y. Choi, DNA-assisted exfoliation of tungsten dichalcogenides and their antibacterial effect. ACS Appl. Mater. Interf. 8, 1943–1950 (2016)CrossRef
42.
Zurück zum Zitat Z. Yuan, B. Tao, Y. He, J. Liu, C. Lin, X. Shen, Y. Ding, Y. Yu, C. Mu, P. Liu, Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials 217, 119290 (2019)CrossRef Z. Yuan, B. Tao, Y. He, J. Liu, C. Lin, X. Shen, Y. Ding, Y. Yu, C. Mu, P. Liu, Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials 217, 119290 (2019)CrossRef
43.
Zurück zum Zitat S. Pandit, S. Karunakaran, S.K. Boda, B. Basu, M. De, High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl. Mater. Interf. 8, 31567–31573 (2016)CrossRef S. Pandit, S. Karunakaran, S.K. Boda, B. Basu, M. De, High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl. Mater. Interf. 8, 31567–31573 (2016)CrossRef
44.
Zurück zum Zitat D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J.L. Plaza, E. Martín Rodríguez, J. García Solém, Nanoparticles for photothermal therapies. Nanoscale 6, 9494–9530 (2014) D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J.L. Plaza, E. Martín Rodríguez, J. García Solém, Nanoparticles for photothermal therapies. Nanoscale 6, 9494–9530 (2014)
45.
Zurück zum Zitat W.-Y. Pan, C.-C. Huang, T.-T. Lin, H.-Y. Hu, W.-C. Lin, M.-J. Li, H.-W. Sung, Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomed.: Nanotech. Biol. Med. 12, 431–438 (2016)CrossRef W.-Y. Pan, C.-C. Huang, T.-T. Lin, H.-Y. Hu, W.-C. Lin, M.-J. Li, H.-W. Sung, Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomed.: Nanotech. Biol. Med. 12, 431–438 (2016)CrossRef
46.
Zurück zum Zitat Y. Liu, X. Zeng, X. Hu, J. Hu, X. Zhang, Two-dimensional nanomaterials for photocatalytic water disinfection: recent progress and future challenges. J. Chem. Technol. Biotechnol. 94, 22–37 (2019)CrossRef Y. Liu, X. Zeng, X. Hu, J. Hu, X. Zhang, Two-dimensional nanomaterials for photocatalytic water disinfection: recent progress and future challenges. J. Chem. Technol. Biotechnol. 94, 22–37 (2019)CrossRef
47.
Zurück zum Zitat C. Liu, D. Kong, P.-C. Hsu, H. Yuan, H.-W. Lee, Y. Liu, H. Wang, S. Wang, K. Yan, D. Lin, Rapid water disinfection using vertically aligned MoS 2 nanofilms and visible light. Nat. Nanotechnol. 11, 1098–1104 (2016)CrossRef C. Liu, D. Kong, P.-C. Hsu, H. Yuan, H.-W. Lee, Y. Liu, H. Wang, S. Wang, K. Yan, D. Lin, Rapid water disinfection using vertically aligned MoS 2 nanofilms and visible light. Nat. Nanotechnol. 11, 1098–1104 (2016)CrossRef
48.
Zurück zum Zitat L. Sun, T. Du, C. Hu, J. Chen, J. Lu, Z. Lu, H. Han, Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustain. Chem. Eng. 5, 8693–8701 (2017)CrossRef L. Sun, T. Du, C. Hu, J. Chen, J. Lu, Z. Lu, H. Han, Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustain. Chem. Eng. 5, 8693–8701 (2017)CrossRef
49.
Zurück zum Zitat D. Wu, B. Wang, W. Wang, T. An, G. Li, T.W. Ng, H.Y. Yip, C. Xiong, H.K. Lee, P.K. Wong, Visible-light-driven BiOBr nanosheets for highly facet-dependent photocatalytic inactivation of Escherichia coli. J. Mater. Chem. A 3, 15148–15155 (2015)CrossRef D. Wu, B. Wang, W. Wang, T. An, G. Li, T.W. Ng, H.Y. Yip, C. Xiong, H.K. Lee, P.K. Wong, Visible-light-driven BiOBr nanosheets for highly facet-dependent photocatalytic inactivation of Escherichia coli. J. Mater. Chem. A 3, 15148–15155 (2015)CrossRef
50.
Zurück zum Zitat Z. Xu, Y. Gao, S. Meng, B. Yang, L. Pang, C. Wang, T. Liu, Mechanism and in vivo evaluation: photodynamic antibacterial chemotherapy of lysine-porphyrin conjugate. Front. Microbiol. 7, 242 (2016)CrossRef Z. Xu, Y. Gao, S. Meng, B. Yang, L. Pang, C. Wang, T. Liu, Mechanism and in vivo evaluation: photodynamic antibacterial chemotherapy of lysine-porphyrin conjugate. Front. Microbiol. 7, 242 (2016)CrossRef
51.
Zurück zum Zitat B.Z. Ristic, M.M. Milenkovic, I.R. Dakic, B.M. Todorovic-Markovic, M.S. Milosavljevic, M.D. Budimir, V.G. Paunovic, M.D. Dramicanin, Z.M. Markovic, V.S. Trajkovic, Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35, 4428–4435 (2014)CrossRef B.Z. Ristic, M.M. Milenkovic, I.R. Dakic, B.M. Todorovic-Markovic, M.S. Milosavljevic, M.D. Budimir, V.G. Paunovic, M.D. Dramicanin, Z.M. Markovic, V.S. Trajkovic, Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35, 4428–4435 (2014)CrossRef
52.
Zurück zum Zitat W. Liu, Y. Feng, H. Tang, H. Yuan, S. He, S. Miao, Immobilization of silver nanocrystals on carbon nanotubes using ultra-thin molybdenum sulfide sacrificial layers for antibacterial photocatalysis in visible light. Carbon 96, 303–310 (2016)CrossRef W. Liu, Y. Feng, H. Tang, H. Yuan, S. He, S. Miao, Immobilization of silver nanocrystals on carbon nanotubes using ultra-thin molybdenum sulfide sacrificial layers for antibacterial photocatalysis in visible light. Carbon 96, 303–310 (2016)CrossRef
53.
Zurück zum Zitat Z. Feng, X. Liu, L. Tan, Z. Cui, X. Yang, Z. Li, Y. Zheng, K.W.K. Yeung, S. Wu, Electrophoretic deposited stable chitosan@ MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation. Small 14, 1704347 (2018)CrossRef Z. Feng, X. Liu, L. Tan, Z. Cui, X. Yang, Z. Li, Y. Zheng, K.W.K. Yeung, S. Wu, Electrophoretic deposited stable chitosan@ MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation. Small 14, 1704347 (2018)CrossRef
54.
Zurück zum Zitat Y. Li, X. Liu, L. Tan, Z. Cui, X. Yang, Y. Zheng, K.W.K. Yeung, P.K. Chu, S. Wu, Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv. Func. Mater. 28, 1800299 (2018)CrossRef Y. Li, X. Liu, L. Tan, Z. Cui, X. Yang, Y. Zheng, K.W.K. Yeung, P.K. Chu, S. Wu, Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv. Func. Mater. 28, 1800299 (2018)CrossRef
55.
Zurück zum Zitat X. Zhang, C. Zhang, Y. Yang, X. Huang, R. Hang, X. Yao, Light-assisted rapid sterilization by a hydrogel incorporated with Ag3PO4/MoS2 composites for efficient wound disinfection. Chem. Eng. J. 374, 596–604 (2019)CrossRef X. Zhang, C. Zhang, Y. Yang, X. Huang, R. Hang, X. Yao, Light-assisted rapid sterilization by a hydrogel incorporated with Ag3PO4/MoS2 composites for efficient wound disinfection. Chem. Eng. J. 374, 596–604 (2019)CrossRef
56.
Zurück zum Zitat Y. Lin, D. Han, Y. Li, L. Tan, X. Liu, Z. Cui, X. Yang, Z. Li, Y. Liang, S. Zhu, Ag2S@ WS2 heterostructure for rapid bacteria-killing using near-infrared light. ACS Sustain. Chem. Eng. 7, 14982–14990 (2019)CrossRef Y. Lin, D. Han, Y. Li, L. Tan, X. Liu, Z. Cui, X. Yang, Z. Li, Y. Liang, S. Zhu, Ag2S@ WS2 heterostructure for rapid bacteria-killing using near-infrared light. ACS Sustain. Chem. Eng. 7, 14982–14990 (2019)CrossRef
57.
Zurück zum Zitat B. Li, L. Tan, X. Liu, Z. Li, Z. Cui, Y. Liang, S. Zhu, X. Yang, K.W.K. Yeung, S. Wu, Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@ Bi2WO6 coating for rapid bacterial killing. J. Hazard. Mater. 380, 120818 (2019)CrossRef B. Li, L. Tan, X. Liu, Z. Li, Z. Cui, Y. Liang, S. Zhu, X. Yang, K.W.K. Yeung, S. Wu, Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@ Bi2WO6 coating for rapid bacterial killing. J. Hazard. Mater. 380, 120818 (2019)CrossRef
58.
Zurück zum Zitat W. Yin, J. Yu, F. Lv, L. Yan, L.R. Zheng, Z. Gu, Y. Zhao, Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10, 11000–11011 (2016)CrossRef W. Yin, J. Yu, F. Lv, L. Yan, L.R. Zheng, Z. Gu, Y. Zhao, Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10, 11000–11011 (2016)CrossRef
59.
Zurück zum Zitat C. Zhang, D.-F. Hu, J.-W. Xu, M.-Q. Ma, H. Xing, K. Yao, J. Ji, Z.-K. Xu, Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano 12, 12347–12356 (2018)CrossRef C. Zhang, D.-F. Hu, J.-W. Xu, M.-Q. Ma, H. Xing, K. Yao, J. Ji, Z.-K. Xu, Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano 12, 12347–12356 (2018)CrossRef
60.
Zurück zum Zitat M. Li, L. Li, K. Su, X. Liu, T. Zhang, Y. Liang, D. Jing, X. Yang, D. Zheng, Z. Cui, Highly effective and noninvasive near-infrared eradication of a Staphylococcus aureus biofilm on implants by a photoresponsive coating within 20 min. Adv. Sci. 6, 1900599 (2019)CrossRef M. Li, L. Li, K. Su, X. Liu, T. Zhang, Y. Liang, D. Jing, X. Yang, D. Zheng, Z. Cui, Highly effective and noninvasive near-infrared eradication of a Staphylococcus aureus biofilm on implants by a photoresponsive coating within 20 min. Adv. Sci. 6, 1900599 (2019)CrossRef
61.
Zurück zum Zitat A.M. Jastrzębska, E. Karwowska, T. Wojciechowski, W. Ziemkowska, A. Rozmysłowska, L. Chlubny, A. Olszyna, The atomic structure of Ti2C and Ti3C2 MXenes is responsible for their antibacterial activity toward E. coli bacteria. J. Mater. Eng. Perform. 28, 1272–1277 (2019)CrossRef A.M. Jastrzębska, E. Karwowska, T. Wojciechowski, W. Ziemkowska, A. Rozmysłowska, L. Chlubny, A. Olszyna, The atomic structure of Ti2C and Ti3C2 MXenes is responsible for their antibacterial activity toward E. coli bacteria. J. Mater. Eng. Perform. 28, 1272–1277 (2019)CrossRef
62.
Zurück zum Zitat B. Li, Y. Luo, Y. Zheng, X. Liu, L. Tan, S. Wu, Two-dimensional antibacterial materials. Progr. Mater. Sci. 100976 (2019) B. Li, Y. Luo, Y. Zheng, X. Liu, L. Tan, S. Wu, Two-dimensional antibacterial materials. Progr. Mater. Sci. 100976 (2019)
63.
Zurück zum Zitat L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227 (2017)CrossRef L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227 (2017)CrossRef
64.
Zurück zum Zitat K. Rasool, R.P. Pandey, P.A. Rasheed, S. Buczek, Y. Gogotsi, K.A. Mahmoud, Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater. Today 30, 80–102 (2019)CrossRef K. Rasool, R.P. Pandey, P.A. Rasheed, S. Buczek, Y. Gogotsi, K.A. Mahmoud, Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater. Today 30, 80–102 (2019)CrossRef
65.
Zurück zum Zitat P. Kumar, P. Huo, R. Zhang, B. Liu, Antibacterial properties of graphene-based nanomaterials. Nanomaterials 9, 737 (2019) P. Kumar, P. Huo, R. Zhang, B. Liu, Antibacterial properties of graphene-based nanomaterials. Nanomaterials 9, 737 (2019)
66.
Zurück zum Zitat N. Dwivedi, C. Dhand, P. Kumar, A. Srivastava, Emergent 2D materials for combating infectious diseases: the potential of MXenes and MXene–graphene composites to fight against pandemics. Mater. Adv. 2, 2892–2905 (2021)CrossRef N. Dwivedi, C. Dhand, P. Kumar, A. Srivastava, Emergent 2D materials for combating infectious diseases: the potential of MXenes and MXene–graphene composites to fight against pandemics. Mater. Adv. 2, 2892–2905 (2021)CrossRef
67.
Zurück zum Zitat S. Yaragalla, K.B. Bhavitha, A. Athanassiou, A review on graphene based materials and their antimicrobial properties. Coatings 11, 1197 (2021)CrossRef S. Yaragalla, K.B. Bhavitha, A. Athanassiou, A review on graphene based materials and their antimicrobial properties. Coatings 11, 1197 (2021)CrossRef
68.
Zurück zum Zitat W.-C. Hou, P.-L. Lee, Y.-C. Chou, Y.-S. Wang, Antibacterial property of graphene oxide: the role of phototransformation. Environ. Sci. Nano 4, 647–657 (2017)CrossRef W.-C. Hou, P.-L. Lee, Y.-C. Chou, Y.-S. Wang, Antibacterial property of graphene oxide: the role of phototransformation. Environ. Sci. Nano 4, 647–657 (2017)CrossRef
69.
Zurück zum Zitat K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov, Y. Gogotsi, Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 7, 1598 (2017)CrossRef K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov, Y. Gogotsi, Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 7, 1598 (2017)CrossRef
70.
Zurück zum Zitat M.L. Cohen, Structural, electronic and optical properties of carbon nitride. Mater. Sci. Eng., A 209, 1–4 (1996)CrossRef M.L. Cohen, Structural, electronic and optical properties of carbon nitride. Mater. Sci. Eng., A 209, 1–4 (1996)CrossRef
71.
Zurück zum Zitat J. Zhu, P. Xiao, H. Li, S.A. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces. 6, 16449–16465 (2014)CrossRef J. Zhu, P. Xiao, H. Li, S.A. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces. 6, 16449–16465 (2014)CrossRef
72.
Zurück zum Zitat L. Maya, D.R. Cole, E.W. Hagaman, Carbon–nitrogen pyrolyzates: attempted preparation of carbon nitride. J. Am. Ceram. Soc. 74, 1686–1688 (1991)CrossRef L. Maya, D.R. Cole, E.W. Hagaman, Carbon–nitrogen pyrolyzates: attempted preparation of carbon nitride. J. Am. Ceram. Soc. 74, 1686–1688 (1991)CrossRef
73.
Zurück zum Zitat D.C. Nesting, J.V. Badding, High-pressure synthesis of sp2-bonded carbon nitrides. Chem. Mater. 8, 1535–1539 (1996)CrossRef D.C. Nesting, J.V. Badding, High-pressure synthesis of sp2-bonded carbon nitrides. Chem. Mater. 8, 1535–1539 (1996)CrossRef
74.
Zurück zum Zitat S. Kang, Y. Fang, Y. Huang, L.-F. Cui, Y. Wang, H. Qin, Y. Zhang, X. Li, Y. Wang, Critical influence of g-C3N4 self-assembly coating on the photocatalytic activity and stability of Ag/AgCl microspheres under visible light. Appl. Catal. B 168, 472–482 (2015)CrossRef S. Kang, Y. Fang, Y. Huang, L.-F. Cui, Y. Wang, H. Qin, Y. Zhang, X. Li, Y. Wang, Critical influence of g-C3N4 self-assembly coating on the photocatalytic activity and stability of Ag/AgCl microspheres under visible light. Appl. Catal. B 168, 472–482 (2015)CrossRef
75.
Zurück zum Zitat S. Patnaik, D.P. Sahoo, K. Parida, An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications. Renew. Sustain. Energy Rev. 82, 1297–1312 (2018)CrossRef S. Patnaik, D.P. Sahoo, K. Parida, An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications. Renew. Sustain. Energy Rev. 82, 1297–1312 (2018)CrossRef
76.
Zurück zum Zitat S. Ma, S. Zhan, Y. Jia, Q. Zhou, Superior antibacterial activity of Fe3O4-TiO2 nanosheets under solar light. ACS Appl. Mater. Interf. 7, 21875–21883 (2015)CrossRef S. Ma, S. Zhan, Y. Jia, Q. Zhou, Superior antibacterial activity of Fe3O4-TiO2 nanosheets under solar light. ACS Appl. Mater. Interf. 7, 21875–21883 (2015)CrossRef
77.
Zurück zum Zitat K. Yan, C. Mu, L. Meng, Z. Fei, P.J. Dyson, Recent advances in graphite carbon nitride-based nanocomposites: structure, antibacterial properties and synergies. Nanoscale Adv. 3, 3708–3729 (2021)CrossRef K. Yan, C. Mu, L. Meng, Z. Fei, P.J. Dyson, Recent advances in graphite carbon nitride-based nanocomposites: structure, antibacterial properties and synergies. Nanoscale Adv. 3, 3708–3729 (2021)CrossRef
78.
Zurück zum Zitat J. Dai, J. Song, Y. Qiu, J. Wei, Z. Hong, L. Li, H. Yang, Gold nanoparticle-decorated g-C3N4 nanosheets for controlled generation of reactive oxygen species upon 670 nm laser illumination. ACS Appl. Mater. Interf. 11, 10589–10596 (2019)CrossRef J. Dai, J. Song, Y. Qiu, J. Wei, Z. Hong, L. Li, H. Yang, Gold nanoparticle-decorated g-C3N4 nanosheets for controlled generation of reactive oxygen species upon 670 nm laser illumination. ACS Appl. Mater. Interf. 11, 10589–10596 (2019)CrossRef
79.
Zurück zum Zitat M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014)CrossRef M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014)CrossRef
80.
Zurück zum Zitat A. Shahzad, M. Nawaz, M. Moztahida, J. Jang, K. Tahir, J. Kim, Y. Lim, V.S. Vassiliadis, S.H. Woo, D.S. Lee, Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions. Chem. Eng. J. 368, 400–408 (2019)CrossRef A. Shahzad, M. Nawaz, M. Moztahida, J. Jang, K. Tahir, J. Kim, Y. Lim, V.S. Vassiliadis, S.H. Woo, D.S. Lee, Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions. Chem. Eng. J. 368, 400–408 (2019)CrossRef
81.
Zurück zum Zitat A. Shahzad, K. Rasool, M. Nawaz, W. Miran, J. Jang, M. Moztahida, K.A. Mahmoud, D.S. Lee, Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 349, 748–755 (2018)CrossRef A. Shahzad, K. Rasool, M. Nawaz, W. Miran, J. Jang, M. Moztahida, K.A. Mahmoud, D.S. Lee, Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 349, 748–755 (2018)CrossRef
82.
Zurück zum Zitat X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons 5, 235–258 (2020)CrossRef X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons 5, 235–258 (2020)CrossRef
83.
Zurück zum Zitat K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, K.A. Mahmoud, Antibacterial activity of Ti3C2T x MXene. ACS Nano 10, 3674–3684 (2016)CrossRef K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, K.A. Mahmoud, Antibacterial activity of Ti3C2T x MXene. ACS Nano 10, 3674–3684 (2016)CrossRef
84.
Zurück zum Zitat A. Arabi Shamsabadi, G.M. Sharifian, B. Anasori, M. Soroush, Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustain. Chem. Eng. 6, 16586–16596 A. Arabi Shamsabadi, G.M. Sharifian, B. Anasori, M. Soroush, Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustain. Chem. Eng. 6, 16586–16596
85.
Zurück zum Zitat G.P. Lim, C.F. Soon, M. Morsin, M.K. Ahmad, N. Nayan, K.S. Tee, Synthesis, characterization and antifungal property of Ti3C2Tx MXene nanosheets. Ceram. Int. 46, 20306–20312 (2020)CrossRef G.P. Lim, C.F. Soon, M. Morsin, M.K. Ahmad, N. Nayan, K.S. Tee, Synthesis, characterization and antifungal property of Ti3C2Tx MXene nanosheets. Ceram. Int. 46, 20306–20312 (2020)CrossRef
86.
Zurück zum Zitat R. Pandey, K. Rasool, E.M. Vinod, B. Aïssa, Y. Gogotsi, K. Mahmoud, Ultrahigh-flux and fouling-resistant membrane based on layered silver/MXene(Ti3C2Tx) nanosheets. J. Mater. Chem. A 6 (2018) R. Pandey, K. Rasool, E.M. Vinod, B. Aïssa, Y. Gogotsi, K. Mahmoud, Ultrahigh-flux and fouling-resistant membrane based on layered silver/MXene(Ti3C2Tx) nanosheets. J. Mater. Chem. A 6 (2018)
87.
Zurück zum Zitat H. Moon, J. Bang, S. Hong, G. Kim, J.W. Roh, J. Kim, W. Lee, Strong thermopower enhancement and tunable power factor via semimetal to semiconductor transition in a transition-metal dichalcogenide. ACS Nano 13, 13317–13324 (2019)CrossRef H. Moon, J. Bang, S. Hong, G. Kim, J.W. Roh, J. Kim, W. Lee, Strong thermopower enhancement and tunable power factor via semimetal to semiconductor transition in a transition-metal dichalcogenide. ACS Nano 13, 13317–13324 (2019)CrossRef
88.
Zurück zum Zitat X.Y. Wong, A. Sena-Torralba, R. Alvarez-Diduk, K. Muthoosamy, A. Merkoci, Nanomaterials for nanotheranostics: tuning their properties according to disease needs. ACS Nano 14, 2585–2627 (2020)CrossRef X.Y. Wong, A. Sena-Torralba, R. Alvarez-Diduk, K. Muthoosamy, A. Merkoci, Nanomaterials for nanotheranostics: tuning their properties according to disease needs. ACS Nano 14, 2585–2627 (2020)CrossRef
89.
Zurück zum Zitat S. Begum, A. Pramanik, K. Gates, Y. Gao, P.C. Ray, Antimicrobial peptide-conjugated MoS2-based nanoplatform for multimodal synergistic inactivation of superbugs. ACS Appl. Bio Mater. 2, 769–776 (2019)CrossRef S. Begum, A. Pramanik, K. Gates, Y. Gao, P.C. Ray, Antimicrobial peptide-conjugated MoS2-based nanoplatform for multimodal synergistic inactivation of superbugs. ACS Appl. Bio Mater. 2, 769–776 (2019)CrossRef
90.
Zurück zum Zitat F. Cao, E. Ju, Y. Zhang, Z. Wang, C. Liu, W. Li, Y. Huang, K. Dong, J. Ren, X. Qu, An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano 11, 4651–4659 (2017)CrossRef F. Cao, E. Ju, Y. Zhang, Z. Wang, C. Liu, W. Li, Y. Huang, K. Dong, J. Ren, X. Qu, An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano 11, 4651–4659 (2017)CrossRef
91.
Zurück zum Zitat Y. Feng, Q. Chen, Q. Yin, G. Pan, Z. Tu, L. Liu, Reduced graphene oxide functionalized with gold nanostar nanocomposites for synergistically killing bacteria through intrinsic antimicrobial activity and photothermal ablation. ACS Appl. Bio Mater. 2, 747–756 (2019)CrossRef Y. Feng, Q. Chen, Q. Yin, G. Pan, Z. Tu, L. Liu, Reduced graphene oxide functionalized with gold nanostar nanocomposites for synergistically killing bacteria through intrinsic antimicrobial activity and photothermal ablation. ACS Appl. Bio Mater. 2, 747–756 (2019)CrossRef
92.
Zurück zum Zitat S. Karunakaran, S. Pandit, B. Basu, M. De, Simultaneous exfoliation and functionalization of 2H-MoS2 by thiolated surfactants: applications in enhanced antibacterial activity. J. Am. Chem. Soc. 140, 12634–12644 (2018)CrossRef S. Karunakaran, S. Pandit, B. Basu, M. De, Simultaneous exfoliation and functionalization of 2H-MoS2 by thiolated surfactants: applications in enhanced antibacterial activity. J. Am. Chem. Soc. 140, 12634–12644 (2018)CrossRef
93.
Zurück zum Zitat S. Roy, A. Mondal, V. Yadav, A. Sarkar, R. Banerjee, P. Sanpui, A. Jaiswal, Mechanistic insight into the antibacterial activity of chitosan exfoliated MoS2 nanosheets: membrane damage, metabolic inactivation and oxidative stress. ACS Appl. Bio Mater. 2, 2738–2755 (2019)CrossRef S. Roy, A. Mondal, V. Yadav, A. Sarkar, R. Banerjee, P. Sanpui, A. Jaiswal, Mechanistic insight into the antibacterial activity of chitosan exfoliated MoS2 nanosheets: membrane damage, metabolic inactivation and oxidative stress. ACS Appl. Bio Mater. 2, 2738–2755 (2019)CrossRef
94.
Zurück zum Zitat H. Zhao, C. Zhang, Y. Wang, W. Chen, P.J.J. Alvarez, Self-damaging aerobic reduction of graphene oxide by Escherichia coli: role of GO-mediated extracellular superoxide formation. Environ. Sci. Technol. 52, 12783–12791 (2018)CrossRef H. Zhao, C. Zhang, Y. Wang, W. Chen, P.J.J. Alvarez, Self-damaging aerobic reduction of graphene oxide by Escherichia coli: role of GO-mediated extracellular superoxide formation. Environ. Sci. Technol. 52, 12783–12791 (2018)CrossRef
95.
Zurück zum Zitat X. Yang, J. Li, T. Liang, C. Ma, Y. Zhang, H. Chen, N. Hanagata, H. Su, M. Xu, Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 6, 10126–10133 (2014)CrossRef X. Yang, J. Li, T. Liang, C. Ma, Y. Zhang, H. Chen, N. Hanagata, H. Su, M. Xu, Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 6, 10126–10133 (2014)CrossRef
96.
Zurück zum Zitat W. Zhang, Z. Mou, Y. Wang, Y. Chen, E. Yang, F. Guo, D. Sun, W. Wang, Molybdenum disulfide nanosheets loaded with Chitosan and silver nanoparticles effective antifungal activities: in vitro and in vivo. Mater Sci Eng C Mater Biol Appl 97, 486–497 (2019)CrossRef W. Zhang, Z. Mou, Y. Wang, Y. Chen, E. Yang, F. Guo, D. Sun, W. Wang, Molybdenum disulfide nanosheets loaded with Chitosan and silver nanoparticles effective antifungal activities: in vitro and in vivo. Mater Sci Eng C Mater Biol Appl 97, 486–497 (2019)CrossRef
97.
Zurück zum Zitat Z. Miao, L. Fan, X. Xie, Y. Ma, J. Xue, T. He, Z. Zha, Liquid exfoliation of atomically thin antimony selenide as an efficient two-dimensional antibacterial nanoagent. ACS Appl. Mater. Interf. 11, 26664–26673 (2019)CrossRef Z. Miao, L. Fan, X. Xie, Y. Ma, J. Xue, T. He, Z. Zha, Liquid exfoliation of atomically thin antimony selenide as an efficient two-dimensional antibacterial nanoagent. ACS Appl. Mater. Interf. 11, 26664–26673 (2019)CrossRef
98.
Zurück zum Zitat B. Wang, M.K.H. Leung, X.-Y. Lu, S.-Y. Chen, Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets. Appl. Energy 112, 1190–1197 (2013)CrossRef B. Wang, M.K.H. Leung, X.-Y. Lu, S.-Y. Chen, Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets. Appl. Energy 112, 1190–1197 (2013)CrossRef
99.
Zurück zum Zitat A. Pal, T.K. Jana, T. Roy, A. Pradhan, R. Maiti, S.M. Choudhury, K. Chatterjee, MoS2-TiO2 nanocomposite with excellent adsorption performance and high antibacterial activity. ChemistrySelect 3, 81–90 (2018)CrossRef A. Pal, T.K. Jana, T. Roy, A. Pradhan, R. Maiti, S.M. Choudhury, K. Chatterjee, MoS2-TiO2 nanocomposite with excellent adsorption performance and high antibacterial activity. ChemistrySelect 3, 81–90 (2018)CrossRef
100.
Zurück zum Zitat Z. Li, L. Wu, H. Wang, W. Zhou, H. Liu, H. Cui, P. Li, P.K. Chu, X.-F. Yu, Synergistic antibacterial activity of black phosphorus nanosheets modified with titanium aminobenzenesulfanato complexes. ACS Appl. Nano Mater. 2, 1202–1209 (2019)CrossRef Z. Li, L. Wu, H. Wang, W. Zhou, H. Liu, H. Cui, P. Li, P.K. Chu, X.-F. Yu, Synergistic antibacterial activity of black phosphorus nanosheets modified with titanium aminobenzenesulfanato complexes. ACS Appl. Nano Mater. 2, 1202–1209 (2019)CrossRef
101.
Zurück zum Zitat K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov, Y. Gogotsi, Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 7, 1–11 (2017)CrossRef K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov, Y. Gogotsi, Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 7, 1–11 (2017)CrossRef
Metadaten
Titel
Antibacterial Properties of Two-Dimensional Nanomaterials
verfasst von
Elishba Noor
Usman Liaqat
Waqas Qamar Zaman
Sabir Hussain
Asif Shahzad
Kashif Rasool
Zaeem Bin Babar
Waheed Miran
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-28756-5_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.