Skip to main content
Erschienen in: Journal of Electronic Materials 6/2021

22.03.2021 | Original Research Article

Antimicrobial and Nonlinear Optical Studies of Copper Oxide Nanoparticles

verfasst von: K. B. Manjunatha, Ramesh S. Bhat, A. Shashidhara, H. S. Anil Kumar, S. Nagashree

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Copper oxide nanoparticles were successfully prepared by a simple solution combustion technique with cupric nitrate and glycine solutions. The formation of copper oxide nanoparticles was confirmed by UV-visible spectroscopy and X-ray diffraction. The surface structure of nanoparticles was obtained by scanning electron microscopy. UV-visible absorption spectroscopy and X-ray diffraction confirm the existence of mixed-phase copper oxide nanoparticles. The standard agar well diffusion technique has been adopted to evaluate the antimicrobial activity of nanoparticles and found suitable for antimicrobial applications. The nonlinear optical activity of the copper oxide nanoparticles was studied using Z-scanning with a continuous-wave laser at 532 nm wavelength. The experimental result suggests that the prominent nonlinear absorption in the nanoparticles having a nonlinear absorption coefficient of 7.14 × 10-2 cm/W. Nanoparticles display superior optical limitation due to strong nonlinear absorption in the nanoparticles which may be attributed to interband and intraband transitions.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat A.H. Reshak, N.M. Abbass, J. Bila, M.R. Johan, and I. Kityk, J. Phys. Chem. C 123, 27172 (2019).CrossRef A.H. Reshak, N.M. Abbass, J. Bila, M.R. Johan, and I. Kityk, J. Phys. Chem. C 123, 27172 (2019).CrossRef
3.
Zurück zum Zitat R. Mahiaoui, T. Ouahrani, A. Chikhaoui, A. Morales-García, and A.H. Reshak, J. Phys. Chem. Solids 119, 220 (2018).CrossRef R. Mahiaoui, T. Ouahrani, A. Chikhaoui, A. Morales-García, and A.H. Reshak, J. Phys. Chem. Solids 119, 220 (2018).CrossRef
5.
Zurück zum Zitat A.H. Reshak, and S. Auluck, Phys. Chem. Chem. Phys. 19, 18416 (2017).CrossRef A.H. Reshak, and S. Auluck, Phys. Chem. Chem. Phys. 19, 18416 (2017).CrossRef
8.
Zurück zum Zitat X. Jiang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y. Zeng, X. Zhu, Y. Lu, and H. Zhang, Adv. Opt. Mater. 6, 1800561 (2018).CrossRef X. Jiang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y. Zeng, X. Zhu, Y. Lu, and H. Zhang, Adv. Opt. Mater. 6, 1800561 (2018).CrossRef
9.
Zurück zum Zitat L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, Adv. Opt. Mater. 5, 1700301 (2017).CrossRef L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu, Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, Adv. Opt. Mater. 5, 1700301 (2017).CrossRef
10.
Zurück zum Zitat Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, Adv. Opt. Mater. 6, 1701166 (2017).CrossRef Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, H. Zhang, and D. Fan, Adv. Opt. Mater. 6, 1701166 (2017).CrossRef
11.
Zurück zum Zitat X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren, H. ZhangP, and N. Prasad, Phys. Rep. 848, 1 (2020).CrossRef X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren, H. ZhangP, and N. Prasad, Phys. Rep. 848, 1 (2020).CrossRef
12.
Zurück zum Zitat L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, Adv. Mater. 31, 1807981 (2019).CrossRef L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, Adv. Mater. 31, 1807981 (2019).CrossRef
13.
Zurück zum Zitat L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S.C. Dhanabalan, J. Sophia, P. Biqin, D. Yuanjiang, X. Feng, X. Dianyuan, and F.H. Zhang, Laser Photonics Rev. 12, 1700221 (2017).CrossRef L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S.C. Dhanabalan, J. Sophia, P. Biqin, D. Yuanjiang, X. Feng, X. Dianyuan, and F.H. Zhang, Laser Photonics Rev. 12, 1700221 (2017).CrossRef
14.
Zurück zum Zitat Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang, Prog. Mater. Sci. 60, 208 (2014).CrossRef Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang, Prog. Mater. Sci. 60, 208 (2014).CrossRef
15.
Zurück zum Zitat B. Maleki, E. Esmaeilnezhad, H.J. Choi, E. Koushki, H. Asghar, R. Aliabad, and M. Esmaeili, Curr. Appl. Phys. 20, 822 (2020).CrossRef B. Maleki, E. Esmaeilnezhad, H.J. Choi, E. Koushki, H. Asghar, R. Aliabad, and M. Esmaeili, Curr. Appl. Phys. 20, 822 (2020).CrossRef
16.
Zurück zum Zitat M. Nageshwari, C. Rathika, T. Kumari, S. Sudha, G. Vinitha, M. Lydia Caroline, G. Mathubala, A. Manikandan, Phys. B Cond. Matter 582, 411980 (2020) M. Nageshwari, C. Rathika, T. Kumari, S. Sudha, G. Vinitha, M. Lydia Caroline, G. Mathubala, A. Manikandan, Phys. B Cond. Matter 582, 411980 (2020)
17.
Zurück zum Zitat X. Zhu, J. Wang, D. Nguyen, J. Thomas, R.A. Norwood, and N. PeyghambarianZhu, Opt. Mat. Exp. 2, 103 (2012).CrossRef X. Zhu, J. Wang, D. Nguyen, J. Thomas, R.A. Norwood, and N. PeyghambarianZhu, Opt. Mat. Exp. 2, 103 (2012).CrossRef
18.
Zurück zum Zitat H. Wang, J.Z. Xu, J.J. Zhu, and H.Y. Chen, J. Cryst. Growth 244, 88 (2002).CrossRef H. Wang, J.Z. Xu, J.J. Zhu, and H.Y. Chen, J. Cryst. Growth 244, 88 (2002).CrossRef
19.
Zurück zum Zitat J.M. Kshirsagar, R. Srivastava, and P.S. Adwani, Therm. Sci. 21, 233 (2017).CrossRef J.M. Kshirsagar, R. Srivastava, and P.S. Adwani, Therm. Sci. 21, 233 (2017).CrossRef
20.
Zurück zum Zitat A. El-Trass, H.E. Shamy, I.E. Mehasse, and M.E. Kemary, Appl. Surf. Sci. 258, 2997 (2012).CrossRef A. El-Trass, H.E. Shamy, I.E. Mehasse, and M.E. Kemary, Appl. Surf. Sci. 258, 2997 (2012).CrossRef
21.
Zurück zum Zitat H. Almasi, P. Jafarzadeh, and L. Mehryar, Carbohydr. Polym. 186, 273 (2018).CrossRef H. Almasi, P. Jafarzadeh, and L. Mehryar, Carbohydr. Polym. 186, 273 (2018).CrossRef
22.
Zurück zum Zitat K.M. Rajesh, B. Ajitha, Y.A. Kumar, Y. Suneetha, and P.S. Reddy, Opt. Int. J. Light Electron Opt. 154, 593 (2018).CrossRef K.M. Rajesh, B. Ajitha, Y.A. Kumar, Y. Suneetha, and P.S. Reddy, Opt. Int. J. Light Electron Opt. 154, 593 (2018).CrossRef
23.
Zurück zum Zitat S. Sonia, R. Jayasudha, P. Naidu Dhanpa Jayram, D. Suresh Kumar, S. Mangalaraj, R. Prabagaran, Synthesis of hierarchical CuO nanostructures: biocompatible antibacterial agents for gram-positive and gram-negative bacteria. Curr. Appl. Phys. 16(8), 914 (2016) S. Sonia, R. Jayasudha, P. Naidu Dhanpa Jayram, D. Suresh Kumar, S. Mangalaraj, R. Prabagaran, Synthesis of hierarchical CuO nanostructures: biocompatible antibacterial agents for gram-positive and gram-negative bacteria. Curr. Appl. Phys. 16(8), 914 (2016)
24.
Zurück zum Zitat L. Wang, C.C. Liu, Y.Y. Wang, H. Xu, H. Su, and X. Cheng, Curr. Appl. Phys. 16, 969 (2016).CrossRef L. Wang, C.C. Liu, Y.Y. Wang, H. Xu, H. Su, and X. Cheng, Curr. Appl. Phys. 16, 969 (2016).CrossRef
26.
27.
Zurück zum Zitat G.S. Boltaev, R.A. Ganeev, P.S. Krishnendu, K. Zhang, and C. Guo, Sci. Rep. 9, 11414 (2019).CrossRef G.S. Boltaev, R.A. Ganeev, P.S. Krishnendu, K. Zhang, and C. Guo, Sci. Rep. 9, 11414 (2019).CrossRef
28.
Zurück zum Zitat M. Outokesh, M. Hosseinpour, S.J. Ahmadi, T. Mousavand, S. Sadjadi, and W. Soltanian, Ind. Eng. Chem. Res. 50, 3540 (2011).CrossRef M. Outokesh, M. Hosseinpour, S.J. Ahmadi, T. Mousavand, S. Sadjadi, and W. Soltanian, Ind. Eng. Chem. Res. 50, 3540 (2011).CrossRef
29.
31.
32.
Zurück zum Zitat M.S. Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum Electron 26, 760 (1990).CrossRef M.S. Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum Electron 26, 760 (1990).CrossRef
33.
34.
Zurück zum Zitat S.S. Sawant, A.D. Bhagwat, and C.M. Mahajan, J. Nano-Electron. Phys. 8, 01035 (2016). S.S. Sawant, A.D. Bhagwat, and C.M. Mahajan, J. Nano-Electron. Phys. 8, 01035 (2016).
35.
Zurück zum Zitat K.G. Chandrappa, and T.V. Venkatesha, J. Exp. Nanosci. 8, 516 (2013).CrossRef K.G. Chandrappa, and T.V. Venkatesha, J. Exp. Nanosci. 8, 516 (2013).CrossRef
36.
Zurück zum Zitat NCCLS (National Committee for Clinical Laboratory Standards). Approved standard. Villanova, P.A. Publication: M2-A5, USA (1993). NCCLS (National Committee for Clinical Laboratory Standards). Approved standard. Villanova, P.A. Publication: M2-A5, USA (1993).
37.
Zurück zum Zitat Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 16th informational supplement. M100-S16. Wayne, PA, USA: Clinical and Laboratory Standards Institute; (2006) Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 16th informational supplement. M100-S16. Wayne, PA, USA: Clinical and Laboratory Standards Institute; (2006)
38.
Zurück zum Zitat X.H. Vu, T.T.T. Duong, T.T.H. Pham, D.K. Trinh, X.H. Nguyen, and V.S. Dang, Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 025019 (2018).CrossRef X.H. Vu, T.T.T. Duong, T.T.H. Pham, D.K. Trinh, X.H. Nguyen, and V.S. Dang, Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 025019 (2018).CrossRef
39.
Zurück zum Zitat R. Zia, M. Riaz, N. Farooq, A. Qamar, and S. Anjum, Mater. Res. Exp. 5, 075012 (2018).CrossRef R. Zia, M. Riaz, N. Farooq, A. Qamar, and S. Anjum, Mater. Res. Exp. 5, 075012 (2018).CrossRef
40.
Zurück zum Zitat S. Rajeshkumar, C. Malarkodi, and S.V. Kumar, Asian J. Pharm. Clin. Res. 10, 190 (2017).CrossRef S. Rajeshkumar, C. Malarkodi, and S.V. Kumar, Asian J. Pharm. Clin. Res. 10, 190 (2017).CrossRef
41.
42.
Zurück zum Zitat E.W. Van Stryland, M.S. Bahae, in Z-Scan Measurements of Optical Non-Linearities, eds. by M. G. Kuzyk, C. W. Dirik (Marcel Dekker Inc. New York, 1998) pp. 655. E.W. Van Stryland, M.S. Bahae, in Z-Scan Measurements of Optical Non-Linearities, eds. by M. G. Kuzyk, C. W. Dirik (Marcel Dekker Inc. New York, 1998) pp. 655.
43.
Zurück zum Zitat K. Kumara, T.C.S. Shetty, S.R. Maidur, P.S. Patil, and S.M. Dharmaprakash, Optik 178, 384 (2019).CrossRef K. Kumara, T.C.S. Shetty, S.R. Maidur, P.S. Patil, and S.M. Dharmaprakash, Optik 178, 384 (2019).CrossRef
44.
Zurück zum Zitat G. Muruganandi, M. Saravanan, G. Vinitha, M.B. Jessie Raj, T.C. Sabari Girisun, Effect of reducing agents in tuning the third-order optical nonlinearity and optical limiting behavior of reduced graphene oxide. Chem. Phys. 488, 55 (2017). G. Muruganandi, M. Saravanan, G. Vinitha, M.B. Jessie Raj, T.C. Sabari Girisun, Effect of reducing agents in tuning the third-order optical nonlinearity and optical limiting behavior of reduced graphene oxide. Chem. Phys. 488, 55 (2017).
45.
Zurück zum Zitat E. Ferreira, B. Kharisov, A. Vázquez, A. E. Méndez, S.I. Carrillo, I. sM. Trejo-Durán, Tuning the nonlinear optical properties of Au@Ag bimetallic nanoparticles. J. Mol. Liq., 298, 112057 (2020) E. Ferreira, B. Kharisov, A. Vázquez, A. E. Méndez, S.I. Carrillo, I. sM. Trejo-Durán, Tuning the nonlinear optical properties of Au@Ag bimetallic nanoparticles. J. Mol. Liq., 298, 112057 (2020)
46.
Zurück zum Zitat E. Kirubha, and P.K. Palanisamy, Adv. Nat. Sci. Nanosci. 5, 045006 (2014).CrossRef E. Kirubha, and P.K. Palanisamy, Adv. Nat. Sci. Nanosci. 5, 045006 (2014).CrossRef
47.
Zurück zum Zitat Y. Chen, M. Hanack, Y. Araki, and O. Ito, Chem. Soc. Rev. 34, 517 (2005).CrossRef Y. Chen, M. Hanack, Y. Araki, and O. Ito, Chem. Soc. Rev. 34, 517 (2005).CrossRef
48.
Zurück zum Zitat M. Egblewogbe, B. Anand, R. Podila, R. Philip, S.S.S. Sai, and A.M. Rao, Mater. Exp. 2, 351 (2012).CrossRef M. Egblewogbe, B. Anand, R. Podila, R. Philip, S.S.S. Sai, and A.M. Rao, Mater. Exp. 2, 351 (2012).CrossRef
49.
Zurück zum Zitat A. Chen, G. Yang, H. Long, F. Li, Y. Li, and P. Lu, Thin Solid Films 517, 4277 (2009).CrossRef A. Chen, G. Yang, H. Long, F. Li, Y. Li, and P. Lu, Thin Solid Films 517, 4277 (2009).CrossRef
50.
51.
Zurück zum Zitat Y. Choi, J.-H. Park, M.R. Kim, W. Jhe, and B.K. Rhee, Appl. Phys. Lett. 78, 856 (2001).CrossRef Y. Choi, J.-H. Park, M.R. Kim, W. Jhe, and B.K. Rhee, Appl. Phys. Lett. 78, 856 (2001).CrossRef
Metadaten
Titel
Antimicrobial and Nonlinear Optical Studies of Copper Oxide Nanoparticles
verfasst von
K. B. Manjunatha
Ramesh S. Bhat
A. Shashidhara
H. S. Anil Kumar
S. Nagashree
Publikationsdatum
22.03.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08838-3

Weitere Artikel der Ausgabe 6/2021

Journal of Electronic Materials 6/2021 Zur Ausgabe

Neuer Inhalt