Skip to main content

2016 | OriginalPaper | Buchkapitel

Antimicrobial Properties of Graphene Nanomaterials: Mechanisms and Applications

verfasst von : Adel Soroush, Douglas Rice, Md Saifur Rahaman, François Perreault

Erschienen in: Graphene-based Materials in Health and Environment

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanotechnology opens new possibilities for the development of antimicrobial materials. Of particular interest are graphene-based nanomaterials, which possess unique antimicrobial properties and offer multiple routes for functionalization into advanced nanocomposite materials. In this chapter, we review the current state of knowledge regarding the fundamental aspects of the antimicrobial interactions of graphene and graphene-based materials. Then, an overview of the multiple graphene-based composite materials developed for antimicrobial applications is provided, with an analysis of the different chemical functionalization routes used to modify graphene and graphene oxide with biocidal compounds. An analysis of the potential of graphene-based nanomaterials in the development of novel antimicrobial surfaces and coatings is also conducted, with an emphasis on the field of membrane processes, where significant developments have been made. Finally, promising avenues for material development are identified and critical questions surrounding graphene-based nanomaterials are discussed, providing a guide for future development and application of antimicrobial graphene-based materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
9.
Zurück zum Zitat Xiu Z, Zhang Q, Puppala HL et al (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275. doi:10.1021/nl301934w Xiu Z, Zhang Q, Puppala HL et al (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275. doi:10.​1021/​nl301934w
10.
Zurück zum Zitat Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913. doi:10.1021/nn102272n CrossRef Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913. doi:10.​1021/​nn102272n CrossRef
14.
17.
Zurück zum Zitat Perreault F, Melegari SP, Fuzinatto CF et al (2014) Toxicity of pamam-coated gold nanoparticles in different unicellular models. Environ Toxicol 29:328–336. doi:10.1002/tox.21761 CrossRef Perreault F, Melegari SP, Fuzinatto CF et al (2014) Toxicity of pamam-coated gold nanoparticles in different unicellular models. Environ Toxicol 29:328–336. doi:10.​1002/​tox.​21761 CrossRef
19.
Zurück zum Zitat Wang Y-W, Cao A, Jiang Y et al (2014) Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl Mater Interfaces 6:2791–2798. doi:10.1021/am4053317 CrossRef Wang Y-W, Cao A, Jiang Y et al (2014) Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl Mater Interfaces 6:2791–2798. doi:10.​1021/​am4053317 CrossRef
20.
Zurück zum Zitat Tong T, Shereef A, Wu J et al (2013) Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environ Sci Technol 47:12487–12495. doi:10.1021/es403079h CrossRef Tong T, Shereef A, Wu J et al (2013) Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environ Sci Technol 47:12487–12495. doi:10.​1021/​es403079h CrossRef
21.
Zurück zum Zitat Kubacka A, Diez MS, Rojo D et al (2014) Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep 4:4134. doi:10.1038/srep04134 CrossRef Kubacka A, Diez MS, Rojo D et al (2014) Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep 4:4134. doi:10.​1038/​srep04134 CrossRef
22.
Zurück zum Zitat Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42:8127–8132. doi:10.1021/es801869m CrossRef Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42:8127–8132. doi:10.​1021/​es801869m CrossRef
23.
Zurück zum Zitat Lyon DY, Brunet L, Hinkal GW et al (2008) Antibacterial activity of fullerene water suspensions (nC 60) is not due to ROS-mediated damage. Nano Lett 8:1539–1543. doi:10.1021/nl0726398 CrossRef Lyon DY, Brunet L, Hinkal GW et al (2008) Antibacterial activity of fullerene water suspensions (nC 60) is not due to ROS-mediated damage. Nano Lett 8:1539–1543. doi:10.​1021/​nl0726398 CrossRef
24.
25.
26.
Zurück zum Zitat Pasquini LM, Sekol RC, Taylor AD et al (2013) Realizing comparable oxidative and cytotoxic potential of single- and multiwalled carbon nanotubes through annealing. Environ Sci Technol 47:8775–8783. doi:10.1021/es401786s Pasquini LM, Sekol RC, Taylor AD et al (2013) Realizing comparable oxidative and cytotoxic potential of single- and multiwalled carbon nanotubes through annealing. Environ Sci Technol 47:8775–8783. doi:10.​1021/​es401786s
28.
29.
Zurück zum Zitat Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980. doi:10.1021/nn202451x CrossRef Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980. doi:10.​1021/​nn202451x CrossRef
30.
Zurück zum Zitat Mangadlao JD, Santos CM, Felipe MJL et al (2015) On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films. Chem Commun 1:1–4. doi:10.1039/C4CC07836E Mangadlao JD, Santos CM, Felipe MJL et al (2015) On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films. Chem Commun 1:1–4. doi:10.​1039/​C4CC07836E
32.
Zurück zum Zitat Wang J, Wei Y, Shi X, Gao H (2013) Cellular entry of graphene nanosheets: the role of thickness, oxidation and surface adsorption. RSC Adv 3:15776–15782. doi:10.1039/c3ra40392k CrossRef Wang J, Wei Y, Shi X, Gao H (2013) Cellular entry of graphene nanosheets: the role of thickness, oxidation and surface adsorption. RSC Adv 3:15776–15782. doi:10.​1039/​c3ra40392k CrossRef
33.
35.
Zurück zum Zitat Li Y, Yuan H, von dem Bussche A et al (2013) Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA 110:12295–12300. doi:10.1073/pnas.1222276110 CrossRef Li Y, Yuan H, von dem Bussche A et al (2013) Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA 110:12295–12300. doi:10.​1073/​pnas.​1222276110 CrossRef
37.
Zurück zum Zitat Lei H, Zhou X, Wu H et al (2014) Morphology change and detachment of lipid bilayers from the mica substrate driven by graphene oxide sheets. Langmuir 30:4678–4683. doi:10.1021/la500788z CrossRef Lei H, Zhou X, Wu H et al (2014) Morphology change and detachment of lipid bilayers from the mica substrate driven by graphene oxide sheets. Langmuir 30:4678–4683. doi:10.​1021/​la500788z CrossRef
38.
Zurück zum Zitat Frost R, Jönsson GE, Chakarov D et al (2012) Graphene oxide and lipid membranes: interactions and nanocomposite structures. Nano Lett 12:3356–3362. doi:10.1021/nl203107k CrossRef Frost R, Jönsson GE, Chakarov D et al (2012) Graphene oxide and lipid membranes: interactions and nanocomposite structures. Nano Lett 12:3356–3362. doi:10.​1021/​nl203107k CrossRef
40.
Zurück zum Zitat Chen KL, Bothun GD (2014) Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ Sci Technol 48:873–880. doi:10.1021/es403864v CrossRef Chen KL, Bothun GD (2014) Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ Sci Technol 48:873–880. doi:10.​1021/​es403864v CrossRef
41.
Zurück zum Zitat Castrillón SR-V, Perreault F, de Faria AF, Elimelech M (2015) Interaction of graphene oxide with bacterial cell membranes: insights from force spectroscopy. Environ Sci Technol Lett 2:112–117. doi:10.1021/acs.estlett.5b00066 CrossRef Castrillón SR-V, Perreault F, de Faria AF, Elimelech M (2015) Interaction of graphene oxide with bacterial cell membranes: insights from force spectroscopy. Environ Sci Technol Lett 2:112–117. doi:10.​1021/​acs.​estlett.​5b00066 CrossRef
42.
43.
Zurück zum Zitat Musico YLF, Santos CM, Dalida MLP, Rodrigues DF (2014) Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustain Chem Eng 2:1559–1565. doi:10.1021/sc500044p CrossRef Musico YLF, Santos CM, Dalida MLP, Rodrigues DF (2014) Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustain Chem Eng 2:1559–1565. doi:10.​1021/​sc500044p CrossRef
44.
Zurück zum Zitat Perreault F, Tousley ME, Elimelech M (2014) Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ Sci Technol Lett 71–76. doi:10.1021/ez4001356 Perreault F, Tousley ME, Elimelech M (2014) Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ Sci Technol Lett 71–76. doi:10.​1021/​ez4001356
45.
Zurück zum Zitat Chen J, Peng H, Wang X et al (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889. doi:10.1039/c3nr04941h CrossRef Chen J, Peng H, Wang X et al (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889. doi:10.​1039/​c3nr04941h CrossRef
47.
Zurück zum Zitat Gurunathan S, Han JW, Dayem AA et al (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomed 7:5901–5914. doi:10.2147/IJN.S37397 CrossRef Gurunathan S, Han JW, Dayem AA et al (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomed 7:5901–5914. doi:10.​2147/​IJN.​S37397 CrossRef
48.
50.
Zurück zum Zitat Krishnamoorthy K, Veerapandian M, Zhang L, Yun K (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116:17280−17287. doi:10.1021/jp3047054 Krishnamoorthy K, Veerapandian M, Zhang L, Yun K (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116:17280−17287. doi:10.​1021/​jp3047054
53.
Zurück zum Zitat Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288. doi:10.1021/jp200686k CrossRef Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288. doi:10.​1021/​jp200686k CrossRef
54.
Zurück zum Zitat Johnston HJ, Hutchison GR, Christensen FM et al (2009) The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci 114:162–182. doi:10.1093/toxsci/kfp265 CrossRef Johnston HJ, Hutchison GR, Christensen FM et al (2009) The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci 114:162–182. doi:10.​1093/​toxsci/​kfp265 CrossRef
55.
57.
Zurück zum Zitat Hurum DC, Agrios AF, Gray KA et al (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549. doi:10.1021/Jp0273934 CrossRef Hurum DC, Agrios AF, Gray KA et al (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549. doi:10.​1021/​Jp0273934 CrossRef
58.
Zurück zum Zitat Pasquini LM, Hashmi SM, Sommer TJ et al (2012) Impact of surface functionalization on bacterial cytotoxicity of single-walled carbon nanotubes. Environ Sci Technol 46:6297–6305. doi:10.1021/es300514s CrossRef Pasquini LM, Hashmi SM, Sommer TJ et al (2012) Impact of surface functionalization on bacterial cytotoxicity of single-walled carbon nanotubes. Environ Sci Technol 46:6297–6305. doi:10.​1021/​es300514s CrossRef
62.
64.
Zurück zum Zitat Sharma R, Baik JH, Perera CJ, Strano MS (2010) Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett 10:398–405. doi:10.1021/nl902741x CrossRef Sharma R, Baik JH, Perera CJ, Strano MS (2010) Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett 10:398–405. doi:10.​1021/​nl902741x CrossRef
65.
Zurück zum Zitat Upadhyayula VKK, Gadhamshetty V (2010) Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review. Biotechnol Adv 28:802–816. doi:10.1016/j.biotechadv.2010.06.006 CrossRef Upadhyayula VKK, Gadhamshetty V (2010) Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review. Biotechnol Adv 28:802–816. doi:10.​1016/​j.​biotechadv.​2010.​06.​006 CrossRef
66.
Zurück zum Zitat Lin Y, Watson KA, Fallbach MJ et al (2009) Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes. ACS Nano 3:871–884. doi:10.1021/nn8009097 CrossRef Lin Y, Watson KA, Fallbach MJ et al (2009) Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes. ACS Nano 3:871–884. doi:10.​1021/​nn8009097 CrossRef
67.
Zurück zum Zitat Bao Q, Zhang D, Qi P (2011) Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci 360:463–470. doi:10.1016/j.jcis.2011.05.009 CrossRef Bao Q, Zhang D, Qi P (2011) Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci 360:463–470. doi:10.​1016/​j.​jcis.​2011.​05.​009 CrossRef
68.
70.
Zurück zum Zitat Soroush A, Ma W, Cyr M et al (2016) In situ silver decoration on graphene oxide-treated thin film composite forward osmosis membranes: biocidal properties and regeneration potential. Environ Sci Technol Lett 3:13–18. doi:10.1021/acs.estlett.5b00304 CrossRef Soroush A, Ma W, Cyr M et al (2016) In situ silver decoration on graphene oxide-treated thin film composite forward osmosis membranes: biocidal properties and regeneration potential. Environ Sci Technol Lett 3:13–18. doi:10.​1021/​acs.​estlett.​5b00304 CrossRef
71.
Zurück zum Zitat Cai X, Lin M, Tan S et al (2012) The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon N Y 50:3407–3415. doi:10.1016/j.carbon.2012.02.002 CrossRef Cai X, Lin M, Tan S et al (2012) The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon N Y 50:3407–3415. doi:10.​1016/​j.​carbon.​2012.​02.​002 CrossRef
73.
Zurück zum Zitat He T, Liu H, Zhou Y et al (2014) Antibacterial effect and proteomic analysis of graphene-based silver nanoparticles on a pathogenic bacterium Pseudomonas aeruginosa. Biometals 27:673–682. doi:10.1007/s10534-014-9756-1 CrossRef He T, Liu H, Zhou Y et al (2014) Antibacterial effect and proteomic analysis of graphene-based silver nanoparticles on a pathogenic bacterium Pseudomonas aeruginosa. Biometals 27:673–682. doi:10.​1007/​s10534-014-9756-1 CrossRef
75.
Zurück zum Zitat Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.1007/s11051-010-9900-y CrossRef Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.​1007/​s11051-010-9900-y CrossRef
76.
Zurück zum Zitat Soroush A, Ma W, Silvino Y, Rahaman MS (2015) Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environ Sci Nano 2:395–405. doi:10.1039/C5EN00086F CrossRef Soroush A, Ma W, Silvino Y, Rahaman MS (2015) Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environ Sci Nano 2:395–405. doi:10.​1039/​C5EN00086F CrossRef
77.
Zurück zum Zitat Faria AF, Perreault F, Shaulsky E et al (2015) Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide-silver nanocomposites. ACS Appl Mater Interfaces 7:12751–12759. doi:10.1021/acsami.5b01639 CrossRef Faria AF, Perreault F, Shaulsky E et al (2015) Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide-silver nanocomposites. ACS Appl Mater Interfaces 7:12751–12759. doi:10.​1021/​acsami.​5b01639 CrossRef
79.
80.
Zurück zum Zitat Ben-Sasson M, Zodrow KR, Genggeng Q et al (2014) Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol 48:384–393. doi:10.1021/es404232s CrossRef Ben-Sasson M, Zodrow KR, Genggeng Q et al (2014) Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol 48:384–393. doi:10.​1021/​es404232s CrossRef
81.
Zurück zum Zitat Ouyang Y, Cai X, Shi Q et al (2013) Poly-l-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity. Colloids Surf B Biointerfaces 107:107–114. doi:10.1016/j.colsurfb.2013.01.073 CrossRef Ouyang Y, Cai X, Shi Q et al (2013) Poly-l-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity. Colloids Surf B Biointerfaces 107:107–114. doi:10.​1016/​j.​colsurfb.​2013.​01.​073 CrossRef
82.
Zurück zum Zitat Karimi L, Yazdanshenas ME, Khajavi R et al (2014) Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 21:3813–3827. doi:10.1007/s10570-014-0385-1 CrossRef Karimi L, Yazdanshenas ME, Khajavi R et al (2014) Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 21:3813–3827. doi:10.​1007/​s10570-014-0385-1 CrossRef
84.
Zurück zum Zitat He W, Huang H, Yan J, Zhu J (2013) Photocatalytic and antibacterial properties of Au–TiO2 nanocomposite on monolayer graphene: from experiment to theory. J Appl Phys 114:204701. doi:10.1063/1.4836875 CrossRef He W, Huang H, Yan J, Zhu J (2013) Photocatalytic and antibacterial properties of Au–TiO2 nanocomposite on monolayer graphene: from experiment to theory. J Appl Phys 114:204701. doi:10.​1063/​1.​4836875 CrossRef
85.
Zurück zum Zitat Wu B-S, Abdelhamid HN, Wu H-F (2014) Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Adv 4:3722. doi:10.1039/c3ra43992e Wu B-S, Abdelhamid HN, Wu H-F (2014) Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Adv 4:3722. doi:10.​1039/​c3ra43992e
89.
Zurück zum Zitat Tian T, Shi X, Cheng L et al (2014) Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Appl Mater Interfaces 6:8542–8548. doi:10.1021/am5022914 CrossRef Tian T, Shi X, Cheng L et al (2014) Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Appl Mater Interfaces 6:8542–8548. doi:10.​1021/​am5022914 CrossRef
90.
Zurück zum Zitat Wu M-C, Deokar AR, Liao J-H et al (2013) Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7:1281–1290. doi:10.1021/nn304782d CrossRef Wu M-C, Deokar AR, Liao J-H et al (2013) Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7:1281–1290. doi:10.​1021/​nn304782d CrossRef
91.
Zurück zum Zitat Santhosh C, Kollu P, Doshi S et al (2014) Adsorption, photodegradation and antibacterial study of graphene–Fe3O4 nanocomposite for multipurpose water purification application. RSC Adv 4:28300. doi:10.1039/c4ra02913e CrossRef Santhosh C, Kollu P, Doshi S et al (2014) Adsorption, photodegradation and antibacterial study of graphene–Fe3O4 nanocomposite for multipurpose water purification application. RSC Adv 4:28300. doi:10.​1039/​c4ra02913e CrossRef
93.
Zurück zum Zitat Cai X, Tan S, Lin M et al (2011) Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability. Langmuir 27:7828–7835. doi:10.1021/la201499s CrossRef Cai X, Tan S, Lin M et al (2011) Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability. Langmuir 27:7828–7835. doi:10.​1021/​la201499s CrossRef
94.
95.
96.
Zurück zum Zitat Some S, Ho SM, Dua P et al (2012) Dual functions of highly potent graphene derivative-poly-l-lysine composites to inhibit bacteria and support human cells. ACS Nano 6:7151–7161. doi:10.1021/nn302215y CrossRef Some S, Ho SM, Dua P et al (2012) Dual functions of highly potent graphene derivative-poly-l-lysine composites to inhibit bacteria and support human cells. ACS Nano 6:7151–7161. doi:10.​1021/​nn302215y CrossRef
97.
Zurück zum Zitat Yuan B, Zhu T, Zhang Z et al (2011) Self-assembly of multilayered functional films based on graphene oxide sheets for controlled release. J Mater Chem 21:3471. doi:10.1039/c0jm03643a CrossRef Yuan B, Zhu T, Zhang Z et al (2011) Self-assembly of multilayered functional films based on graphene oxide sheets for controlled release. J Mater Chem 21:3471. doi:10.​1039/​c0jm03643a CrossRef
101.
Zurück zum Zitat Polte J, Tuaev X, Wuithschick M et al (2012) Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles. ACS Nano 6:5791–5802. doi:10.1021/nn301724z CrossRef Polte J, Tuaev X, Wuithschick M et al (2012) Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles. ACS Nano 6:5791–5802. doi:10.​1021/​nn301724z CrossRef
102.
105.
Zurück zum Zitat Das MR, Sarma RK, Borah SC et al (2013) The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloids Surf B Biointerfaces 105:128–136. doi:10.1016/j.colsurfb.2012.12.033 CrossRef Das MR, Sarma RK, Borah SC et al (2013) The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloids Surf B Biointerfaces 105:128–136. doi:10.​1016/​j.​colsurfb.​2012.​12.​033 CrossRef
106.
Zurück zum Zitat Zhou Y, Yang J, He T et al (2013) Highly stable and dispersive silver nanoparticle-graphene composites by a simple and low-energy-consuming approach and their antimicrobial activity. Small 9:3445–3454. doi:10.1002/smll.201202455 CrossRef Zhou Y, Yang J, He T et al (2013) Highly stable and dispersive silver nanoparticle-graphene composites by a simple and low-energy-consuming approach and their antimicrobial activity. Small 9:3445–3454. doi:10.​1002/​smll.​201202455 CrossRef
107.
Zurück zum Zitat Zhang Z, Xu F, Yang W et al (2011) A facile one-pot method to high-quality Ag–graphene composite nanosheets for efficient surface-enhanced Raman scattering. Chem Commun (Camb) 47:6440–6442. doi:10.1039/c1cc11125f CrossRef Zhang Z, Xu F, Yang W et al (2011) A facile one-pot method to high-quality Ag–graphene composite nanosheets for efficient surface-enhanced Raman scattering. Chem Commun (Camb) 47:6440–6442. doi:10.​1039/​c1cc11125f CrossRef
109.
Zurück zum Zitat Barua S, Thakur S, Aidew L et al (2014) One step preparation of a biocompatible, antimicrobial reduced graphene oxide–silver nanohybrid as a topical antimicrobial agent. RSC Adv 4:9777. doi:10.1039/c3ra46835f CrossRef Barua S, Thakur S, Aidew L et al (2014) One step preparation of a biocompatible, antimicrobial reduced graphene oxide–silver nanohybrid as a topical antimicrobial agent. RSC Adv 4:9777. doi:10.​1039/​c3ra46835f CrossRef
110.
Zurück zum Zitat Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115. doi:10.1021/cr400407a CrossRef Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115. doi:10.​1021/​cr400407a CrossRef
111.
Zurück zum Zitat Zhang Z, Zhang J, Zhang B, Tang J (2013) Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials. Nanoscale 5:118–123. doi:10.1039/c2nr32092d CrossRef Zhang Z, Zhang J, Zhang B, Tang J (2013) Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials. Nanoscale 5:118–123. doi:10.​1039/​c2nr32092d CrossRef
112.
114.
Zurück zum Zitat Liu J, Fu S, Yuan B et al (2010) Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc 132:7279–7281. doi:10.1021/ja100938r CrossRef Liu J, Fu S, Yuan B et al (2010) Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc 132:7279–7281. doi:10.​1021/​ja100938r CrossRef
118.
Zurück zum Zitat de Faria AF, de Moraes ACM, Marcato PD et al (2014) Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. J Nanopart Res 16:2110. doi:10.1007/s11051-013-2110-7 CrossRef de Faria AF, de Moraes ACM, Marcato PD et al (2014) Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. J Nanopart Res 16:2110. doi:10.​1007/​s11051-013-2110-7 CrossRef
119.
Zurück zum Zitat Mondal T, Bhowmick AK, Krishnamoorti R (2012) Chlorophenyl pendant decorated graphene sheet as a potential antimicrobial agent: synthesis and characterization. J Mater Chem 22:22481. doi:10.1039/c2jm33398h CrossRef Mondal T, Bhowmick AK, Krishnamoorti R (2012) Chlorophenyl pendant decorated graphene sheet as a potential antimicrobial agent: synthesis and characterization. J Mater Chem 22:22481. doi:10.​1039/​c2jm33398h CrossRef
121.
124.
Zurück zum Zitat Shamsuddin N, Das DB, Starov VM (2015) Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: circular cross-flow compared with stirred dead end flow. Chem Eng J 276:331–339. doi:10.1016/j.cej.2015.04.075 CrossRef Shamsuddin N, Das DB, Starov VM (2015) Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: circular cross-flow compared with stirred dead end flow. Chem Eng J 276:331–339. doi:10.​1016/​j.​cej.​2015.​04.​075 CrossRef
125.
Zurück zum Zitat Rautenbach R, Vossenkaul K, Linn T, Katz T (1997) Waste water treatment by membrane processes—new development in ultrafiltration, nanofiltration and reverse osmosis. Desalination 108:247–253. doi:10.1016/S0011-9164(97)00032-5 CrossRef Rautenbach R, Vossenkaul K, Linn T, Katz T (1997) Waste water treatment by membrane processes—new development in ultrafiltration, nanofiltration and reverse osmosis. Desalination 108:247–253. doi:10.​1016/​S0011-9164(97)00032-5 CrossRef
127.
Zurück zum Zitat Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718. doi:10.1002/adma.201001215 CrossRef Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718. doi:10.​1002/​adma.​201001215 CrossRef
131.
Zurück zum Zitat Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials—an interdisciplinary review. Chem Res Toxicol 15–34. doi:10.1021/tx200339h Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials—an interdisciplinary review. Chem Res Toxicol 15–34. doi:10.​1021/​tx200339h
134.
Zurück zum Zitat Perreault F, Jaramillo H, Xie M et al (2016) Biofouling mitigation in forward osmosis using graphene oxide functionalized thin-film composite membranes. Environ Sci Technol. doi:10.1021/acs.est.5b06364 Perreault F, Jaramillo H, Xie M et al (2016) Biofouling mitigation in forward osmosis using graphene oxide functionalized thin-film composite membranes. Environ Sci Technol. doi:10.​1021/​acs.​est.​5b06364
138.
Zurück zum Zitat Zhao C, Xu X, Chen J, Yang F (2013) Journal of Environmental Chemical Engineering Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. Biochem Pharmacol 1:349–354. doi:10.1016/j.jece.2013.05.014 Zhao C, Xu X, Chen J, Yang F (2013) Journal of Environmental Chemical Engineering Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. Biochem Pharmacol 1:349–354. doi:10.​1016/​j.​jece.​2013.​05.​014
142.
Zurück zum Zitat Choi W, Choi J, Bang J, Lee J (2013) Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl Mater Interfaces 5:12510–12519. doi:10.1021/am403790s CrossRef Choi W, Choi J, Bang J, Lee J (2013) Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl Mater Interfaces 5:12510–12519. doi:10.​1021/​am403790s CrossRef
144.
Zurück zum Zitat Duan L, Wang Y, Zhang Y, Liu J (2015) Applied surface science graphene immobilized enzyme/ polyethersulfone mixed matrix membrane: enhanced antibacterial, permeable and mechanical properties. Appl Surf Sci 355:436–445. doi:10.1016/j.apsusc.2015.07.127 CrossRef Duan L, Wang Y, Zhang Y, Liu J (2015) Applied surface science graphene immobilized enzyme/ polyethersulfone mixed matrix membrane: enhanced antibacterial, permeable and mechanical properties. Appl Surf Sci 355:436–445. doi:10.​1016/​j.​apsusc.​2015.​07.​127 CrossRef
147.
Zurück zum Zitat Jiang Y, Wang WN, Liu D et al (2015) Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes. Environ Sci Technol 49:6846–6854. doi:10.1021/acs.est.5b00904 CrossRef Jiang Y, Wang WN, Liu D et al (2015) Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes. Environ Sci Technol 49:6846–6854. doi:10.​1021/​acs.​est.​5b00904 CrossRef
148.
Zurück zum Zitat Safarpour M, Vatanpour V, Khataee A, Esmaeili M (2015) Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene. Sep Purif Technol 154:96–107. doi:10.1016/j.seppur.2015.09.039 CrossRef Safarpour M, Vatanpour V, Khataee A, Esmaeili M (2015) Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene. Sep Purif Technol 154:96–107. doi:10.​1016/​j.​seppur.​2015.​09.​039 CrossRef
149.
152.
Zurück zum Zitat Jin F, Lv W, Zhang C et al (2013) High-performance ultrafiltration membranes based on polyethersulfone–graphene oxide composites. RSC Adv 3:21394. doi:10.1039/c3ra42908c CrossRef Jin F, Lv W, Zhang C et al (2013) High-performance ultrafiltration membranes based on polyethersulfone–graphene oxide composites. RSC Adv 3:21394. doi:10.​1039/​c3ra42908c CrossRef
153.
156.
Zurück zum Zitat Zhang J, Xu Z, Shan M et al (2013) Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J Memb Sci 448:81–92. doi:10.1016/j.memsci.2013.07.064 CrossRef Zhang J, Xu Z, Shan M et al (2013) Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J Memb Sci 448:81–92. doi:10.​1016/​j.​memsci.​2013.​07.​064 CrossRef
159.
Zurück zum Zitat Hegab HM, ElMekawy A, Barclay TG et al (2015) Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Appl Mater Interfaces 7:18004–18016. doi:10.1021/acsami.5b04818 CrossRef Hegab HM, ElMekawy A, Barclay TG et al (2015) Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Appl Mater Interfaces 7:18004–18016. doi:10.​1021/​acsami.​5b04818 CrossRef
Metadaten
Titel
Antimicrobial Properties of Graphene Nanomaterials: Mechanisms and Applications
verfasst von
Adel Soroush
Douglas Rice
Md Saifur Rahaman
François Perreault
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-45639-3_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.