Skip to main content

2024 | OriginalPaper | Buchkapitel

APiCroDD: Automated Pipeline for Crop Disease Detection

verfasst von : Pawan K. Ajmera, Sanchit M. Kabra, Anish Mall, Ankur Lhila, Aaryan Agarwal

Erschienen in: Advances in Data-Driven Computing and Intelligent Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research paper proposes APiCroDD: automated pipeline for crop disease detection, an automated framework for early detection of plant diseases using multispectral imagery from drones. Current frameworks for disease detection are labor and time-consuming. They do not leverage the richness of multispectral imagery for feature extraction and perform vanilla manipulation of agriculture indices. Our framework comprises two stages: data acquisition and disease identification. We find that the use of multispectral imagery in the proposed framework provides several advantages over traditional RGB imagery, including better spectral resolution and increased sensitivity to subtle changes in plant health. The multispectral data enables the identification of specific spectral bands associated with diseased regions of the plant, improving the accuracy of disease detection. The proposed framework utilizes a combination of CNNs and segmentation techniques to identify the plant and its disease. Experimental results demonstrate that the proposed framework using EfficientNet is highly effective in identifying a range of plant diseases achieving state-of-the-art performance on manually collected dataset and validated on the PlantVillage dataset.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schramski JR, Dell AI, Grady JM, Eason TN, Kull CA (2015) Precision agriculture: challenges and opportunities for land use and food security. Science 349(6250):514–518 Schramski JR, Dell AI, Grady JM, Eason TN, Kull CA (2015) Precision agriculture: challenges and opportunities for land use and food security. Science 349(6250):514–518
2.
Zurück zum Zitat Chander S, Kumar P (2016) Precision agriculture in India: an overview. J Saudi Soc Agric Sci 15(1):1–9 Chander S, Kumar P (2016) Precision agriculture in India: an overview. J Saudi Soc Agric Sci 15(1):1–9
3.
Zurück zum Zitat Hughes DPJ, Salathe M (2015) An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:1511.08060 Hughes DPJ, Salathe M (2015) An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:​1511.​08060
4.
Zurück zum Zitat Khamparia A, Singh G, Patel DK, Singh D, Singh V (2021) Deep learning based leaf disease detection model for tomato crop and its performance evaluation for diverse geographical locations. Sensors 21(1):215 Khamparia A, Singh G, Patel DK, Singh D, Singh V (2021) Deep learning based leaf disease detection model for tomato crop and its performance evaluation for diverse geographical locations. Sensors 21(1):215
5.
Zurück zum Zitat Wang N, Nuyttens D, Luo Y, Cao Z (2016) An overview of precision agriculture technologies. J Integr Agric 15(11):2565–2584 Wang N, Nuyttens D, Luo Y, Cao Z (2016) An overview of precision agriculture technologies. J Integr Agric 15(11):2565–2584
6.
Zurück zum Zitat Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
7.
8.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
9.
Zurück zum Zitat Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:​2010.​11929
10.
Zurück zum Zitat Saito K, Jha S, Singh S, Singh P, Singh P (2015) Precision agriculture using machine learning and advanced data analytics. In: 2015 IEEE International conference on engineering and technology (ICET). IEEE, pp 1–4 Saito K, Jha S, Singh S, Singh P, Singh P (2015) Precision agriculture using machine learning and advanced data analytics. In: 2015 IEEE International conference on engineering and technology (ICET). IEEE, pp 1–4
11.
Zurück zum Zitat Zhao C, Zhang D, Li Z, Wang S (2019) Multispectral imaging for plant phenotyping: a review. Comput Electron Agric 165:104961 Zhao C, Zhang D, Li Z, Wang S (2019) Multispectral imaging for plant phenotyping: a review. Comput Electron Agric 165:104961
12.
Zurück zum Zitat Fuentes A, Yoon S, Kim SC, Park DK, Oh SI (2021) Deep learning for plant disease detection: a comprehensive review. Comput Electron Agric 183:106019 Fuentes A, Yoon S, Kim SC, Park DK, Oh SI (2021) Deep learning for plant disease detection: a comprehensive review. Comput Electron Agric 183:106019
13.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
14.
Zurück zum Zitat Mahajan D, Girshick R, Ramanathan V, He K, Paluri M, Li Y, Bharambe A, van der Maaten L (2018) Exploring the limits of weakly supervised pretraining. arXiv preprint arXiv:1805.00932 Mahajan D, Girshick R, Ramanathan V, He K, Paluri M, Li Y, Bharambe A, van der Maaten L (2018) Exploring the limits of weakly supervised pretraining. arXiv preprint arXiv:​1805.​00932
15.
Zurück zum Zitat Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing systems, pp 3320–3328 Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing systems, pp 3320–3328
16.
Zurück zum Zitat Khan A, Sohail A, Ahmad S, Khan A (2018) Deep learning based tomato plant diseases classification. In: 2018 International conference on frontiers of information technology (FIT). IEEE, pp 68–73 Khan A, Sohail A, Ahmad S, Khan A (2018) Deep learning based tomato plant diseases classification. In: 2018 International conference on frontiers of information technology (FIT). IEEE, pp 68–73
17.
Zurück zum Zitat Mao Q, Liu W, Liu S, Hu J, Chen H (2021) Efficient identification of apple diseases using a fine-tuned ResNet-50 model. Comput Electron Agric 184:106042 Mao Q, Liu W, Liu S, Hu J, Chen H (2021) Efficient identification of apple diseases using a fine-tuned ResNet-50 model. Comput Electron Agric 184:106042
18.
Zurück zum Zitat Jin J, Yu C, Zeng Y, Liu S (2021) Tomato leaf diseases detection using improved convolutional neural network. Plant Methods 17(1):13 Jin J, Yu C, Zeng Y, Liu S (2021) Tomato leaf diseases detection using improved convolutional neural network. Plant Methods 17(1):13
19.
Zurück zum Zitat Mahlein AK, Kuska MT, Thomas S, Wahabzada M, Behmann J, Rascher U (2012) Development of spectral indices for detecting and identifying plant diseases. Remote Sens Environ 126:132–142 Mahlein AK, Kuska MT, Thomas S, Wahabzada M, Behmann J, Rascher U (2012) Development of spectral indices for detecting and identifying plant diseases. Remote Sens Environ 126:132–142
20.
Zurück zum Zitat Yang G, Liu C, Li Z, Zhao C, Li X, Wang Z (2017) Detection of bacterial leaf blight in rice using a UAV-mounted multispectral imaging system. Remote Sens 9(1):64 Yang G, Liu C, Li Z, Zhao C, Li X, Wang Z (2017) Detection of bacterial leaf blight in rice using a UAV-mounted multispectral imaging system. Remote Sens 9(1):64
Metadaten
Titel
APiCroDD: Automated Pipeline for Crop Disease Detection
verfasst von
Pawan K. Ajmera
Sanchit M. Kabra
Anish Mall
Ankur Lhila
Aaryan Agarwal
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9521-9_35